skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Acute Impacts of Hurricane Ian on Benthic Habitats, Water Quality, and Microbial Community Composition on the Southwest Florida Shelf
Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems.  more » « less
Award ID(s):
2309659
PAR ID:
10649741
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Puspa L. Adhikari
Date Published:
Journal Name:
Coasts
Volume:
5
Issue:
2
ISSN:
2673-964X
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water column nutrient concentrations and autotrophy in oligotrophic ecosystems are sensitive to eutrophication and other long-term environmental changes and disturbances. Disturbance can be defined as an event or process that changes the structure and response of an ecosystem to other environmental drivers. The role disturbance plays in regulating ecosystem functions is challenging because the effect of the disturbance can vary in magnitude, duration, and extent spatially and temporally. We measured changes in total nitrogen (TN), dissolved inorganic nutrient (DIN), total phosphorus (TP), soluble reactive phosphorus (SRP), total organic carbon (TOC), and chlorophyll-a (Chl-a) concentrations throughout the Everglades, Florida Bay, and the Florida Keys. This region has been subjected to a variety of natural and anthropogenic disturbances including tropical storms, fires, eutrophication, and rapid increases in water levels from sea-level rise and freshwater restoration. We hypothesized that the rate of change in water quality would be greatest in the coastal ecotone where disturbance frequencies and marine P concentrations are highest, and in freshwater marshes closest to hydrologic changes from restoration. We applied trend analyses on multi-decadal data (1996–2019) collected from 461 locations distributed from inland freshwater Everglades (ridge and slough) to outer marine reefs along the Florida Keys, USA. Total Organic Carbon decreased throughout the study area and was the only parameter with a systematic trend throughout the study area. All other parameters had spatially heterogeneous patterns in long-term trends. Results indicate more variability across a large spatial and temporal extent associated with changes in biogeochemical indicators and water quality conditions. Chemical and biological changes in oligotrophic ecosystems are important indicators of environmental change, and our regional ridge-to-reef assessment revealed ecosystem-specific responses to both long-term environmental changes and disturbance legacies. 
    more » « less
  2. Objectives:Fine roots significantly influence ecosystem-scale cycling of nutrients, carbon (C), and water, yet there is limited understanding of how fine root traits vary across and within tropical forests, some of Earth's most C-rich ecosystems. The biomass of fine roots can impact soil carbon storage, as root mortality is a primary source of new carbon to soils. A positive relationship has been observed between fine root biomass and soil carbon stocks in Panama (Cusack et al 2018). Beyond biomass, root characteristics like specific root length (SRL) could also influence soil carbon, as roots with higher SRL are less dense and thinner, potentially decomposing more easily or promoting soil aggregation. Understanding the effects of root morphology and tissue quality on soil carbon storage and with soil properties in general can improve predictions of landscape-scale carbon patterns. We aggregated new data of root biomass, morphology and nutrient content at 0-10 cm, 10-20 cm, 20-50 cm and 50-100 cm depth increments across four distinct lowland Panamanian forests and paired with already published datasets (Cusack et al 2018; Cusack and Turner 2020) of soil chemistry from the same sites and soil depths to explore relationship between soil carbon stocks and root characteristics.Datasets included:The datasets provided include .csv and .xlsx files for fine root characteristics and soil chemistry from four different forests across 0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm depth increments. Root characteristics include live fine root biomass, dead fine root biomass, coarse root biomass, specific root length, root diameter, root tissue density, specific root area, root %N, root %C, and root C/N ratio. Soil chemistry data includes total carbon (TC), dissolved organic carbon (DOC), bulk density, total phosphorus (TP), available phosphorus (AEM Pi), and various Mehlich-extractable elements such as aluminum, calcium, iron, potassium, manganese, phosphorus, and zinc. Nitrogen content measures include ammonium, nitrate, total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The dataset also includes total exchangeable bases (TEB) and effective cation exchange capacity (ECEC) in both centimoles of charge per kilogram and micromoles of charge per gram. The soil chemistry data was obtained from Cusack et al (2018) and Cusack and Turner (2020) and paired with root characteristics data for the same depth increments and sites. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). Root data was averaged across these 8 plots per site and soil data was collected in one pit in each site. This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files. 
    more » « less
  3. Abstract Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience. From 2006 to 2010 coral reefs on the fore reef of Moorea, French Polynesia, experienced severe disturbances that reduced coral cover from ~46% in 2005 to <1% in 2010. Following these disturbances, coral cover increased from 2010 to 2018. Although there was a rapid and widespread recovery of corals, reefs at 17 m depth recovered more slowly than reefs at 10 m depth. We investigated the drivers of different rates of coral recovery between depths from 2010 to 2018 using a combination of time‐series data on coral recruitment, density, growth, and mortality in addition to field experiments testing for the effects of predation. Propagule abundance did not influence recovery, as the density of coral recruits (spat <6 months old) did not differ between depths. However, mortality of juvenile corals (≤5 cm diameter) was higher at 17 m, leading to densities of juvenile corals 3.5 times higher at 10 m than at 17 m depth. Yet, there were no differences in the growth of corals between depths. These results point to an early life stage bottleneck after settlement, resulting in greater mortality at 17 m than at 10 m as the likely driver of differential coral recovery between depths. We used experiments and time‐series data to test mechanisms that could drive different rates of juvenile coral mortality across depths, including differences in predation, competition, and the availability of suitable substratum. The results of these experiments suggested that increased coral mortality at 17 m may have been influenced by higher intensity of fish predation, and higher mortality of corals attached to unfavorable substratum. In contrast, the abundance of macroalgae, a coral competitor, did not explain differences in coral survival. Our work suggests that top‐down processes and substratum quality can create bottlenecks in corals that can drive rates of coral recovery after disturbance. 
    more » « less
  4. Eighteen years after Hurricane Charley made landfall in 2004, Hurricane Ian made landfall in nearly the same location, also as a Category 4 hurricane. Unlike Hurricane Charley (2004), water more so than wind was the impetus behind the disaster that unfolded. Despite being a below-design-level wind event, the large windfield drove a powerful storm surge as much as 13 ft high (relative to the NAVD8 vertical datum) in the barrier islands of Sanibel, Ft. Myers Beach, and Bonita Beach. Flooding was extensive along not only the Florida coast, but also well inland into low-lying areas as far north as Duval County and the storm’s second landfall site in South Carolina. As such, Hurricane Ian will likely be one of the costliest landfalling hurricanes of all time in the US, claiming over 100 lives. The impacts from Hurricane Ian were most severe in the barrier islands from the combination of storm surge and high winds, with many buildings completely washed away, and others left to deal with significant scour and eroded foundations. Several mobile/manufactured home parks on the barrier islands fared particularly poorly, offering little to no protection to anyone unfortunate enough to shelter in them. The damage was not restricted to buildings, as the causeways out to the barrier islands were washed away in multiple locations. In contrast, wind damage from Hurricane Ian appears less severe overall relative to other Category 4 storms, perhaps due to a combination of actual wind intensity being less than Category 4 at the surface at landfall, and the improvements in building construction that have occurred since Hurricane Charley struck 18 years earlier. It is notable that extensive losses were in part driven by decades-long construction boom of residential structures in Ft. Myers and Cape Coral since the 1950s and 1960s, expanding communities and neighborhoods encroaching upon vulnerable coastlines. Beyond serving as an important event to validate current and evolving standards for coastal construction, Hurricane Ian provides a clarion call to reconsider the ramifications of Florida's coastal development under changing climate. This project encompasses the products of StEER's response to this event: Preliminary Virtual Reconnaissance Report (PVRR), Early Access Reconnaissance Report (EARR) and Curated Dataset. 
    more » « less
  5. Abstract Microbial processing of atmospheric nitrogen (N) deposition regulates the retention and mobilization of N in soils, with important implications for water quality. Understanding the links between N deposition, microbial communities, N transformations, and water quality is critical as N deposition shifts toward reduced N and remains persistently high in many regions. Here, we investigated these connections along an elevation transect in the Colorado Front Range. Although rates of N deposition and pools of extractable N increased down the elevation transect, soil microbial communities and N transformation rates did not follow clear elevational patterns. The subalpine microbial community was distinct, corresponding to a high C:N ratio and low pH, while the microbial communities at the lower elevation sites were all very similar. Net nitrification, mineralization, and nitrification potential rates were highest at the Plains (1,700 m) and Montane (2,527 m) sites, suggesting that these ecosystems mobilize N. In contrast, the net immobilization of N observed at the Foothills (1,978 m) and Subalpine (3,015 m) sites suggests that these ecosystems retain N deposition. The contrast in N transformation rates between the plains and foothills, both of which receive elevated N deposition, may be due to spatial heterogeneity not captured in this study and warrants further investigation. Stream N concentrations from the subalpine to the foothills were consistently low, indicating that these soils are currently able to process and retain N deposition, but this may be disrupted if drought, wildfire, or land‐use change alter the ability of the soils to retain N. 
    more » « less