skip to main content


Title: Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
Abstract. Atmospheric aerosols are a significant public health hazard and havesubstantial impacts on the climate. Secondary organic aerosols (SOAs) havebeen shown to phase separate into a highly viscous organic outer layersurrounding an aqueous core. This phase separation can decrease thepartitioning of semi-volatile and low-volatile species to the organic phaseand alter the extent of acid-catalyzed reactions in the aqueous core. A newalgorithm that can determine SOA phase separation based on their glasstransition temperature (Tg), oxygen to carbon (O:C) ratio and organic massto sulfate ratio, and meteorological conditions was implemented into theCommunity Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 andwas used to simulate the conditions in the continental United States for thesummer of 2013. SOA formed at the ground/surface level was predicted to bephase separated with core–shell morphology, i.e., aqueous inorganic coresurrounded by organic coating 65.4 % of the time during the 2013 SouthernOxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeasternUnited States. Our estimate is in proximity to the previously reported∼70 % in literature. The phase states of organic coatingsswitched between semi-solid and liquid states, depending on theenvironmental conditions. The semi-solid shell occurring with lower aerosolliquid water content (western United States and at higher altitudes) has aviscosity that was predicted to be 102–1012 Pa s, whichresulted in organic mass being decreased due to diffusion limitation.Organic aerosol was primarily liquid where aerosol liquid water was dominant(eastern United States and at the surface), with a viscosity <102 Pa s.Phase separation while in a liquid phase state, i.e.,liquid–liquid phase separation (LLPS), also reduces reactive uptake ratesrelative to homogeneous internally mixed liquid morphology but was lowerthan aerosols with a thick viscous organic shell. The sensitivity casesperformed with different phase-separation parameterization and dissolutionrate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can havevarying impact on fine particulate matter (PM2.5) organic mass, interms of bias and error compared to field data collected during the 2013 SOAS.This highlights the need to better constrain the parameters thatgovern phase state and morphology of SOA, as well as expand mechanisticrepresentation of multiphase chemistry for non-IEPOX SOA formation in modelsaided by novel experimental insights.  more » « less
Award ID(s):
1703535
NSF-PAR ID:
10226173
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
20
Issue:
13
ISSN:
1680-7324
Page Range / eLocation ID:
8201 to 8225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Evidence has accumulated that secondary organic aerosols (SOAs) exhibit complex morphologies with multiple phases that can adopt amorphous semisolid or glassy phase states. However, experimental analysis and numerical modeling on the formation and evolution of SOA still often employ equilibrium partitioning with an ideal mixing assumption in the particle phase. Here we apply the kinetic multilayer model of gas–particle partitioning (KM-GAP) to simulate condensation of semi-volatile species into a core–shell phase-separated particle to evaluate equilibration timescales of SOA partitioning. By varying bulk diffusivity and the activity coefficient of the condensing species in the shell, we probe the complex interplay of mass transfer kinetics and the thermodynamics of partitioning. We found that the interplay of non-ideality and phase state can impact SOA partitioning kinetics significantly. The effect of non-ideality on SOA partitioning is slight for liquid particles but becomes prominent in semisolid or solid particles. If the condensing species is miscible with a low activity coefficient in the viscous shell phase, the particle can reach equilibrium with the gas phase long before the dissolution of concentration gradients in the particle bulk. For the condensation of immiscible species with a high activity coefficient in the semisolid shell, the mass concentration in the shell may become higher or overshoot its equilibrium concentration due to slow bulk diffusion through the viscous shell for excess mass to be transferred to the core phase. Equilibration timescales are shorter for the condensation of lower-volatility species into semisolid shell; as the volatility increases, re-evaporation becomes significant as desorption is faster for volatile species than bulk diffusion in a semisolid matrix, leading to an increase in equilibration timescale. We also show that the equilibration timescale is longer in an open system relative to a closed system especially for partitioning of miscible species; hence, caution should be exercised when interpreting and extrapolating closed-system chamber experimental results to atmosphere conditions. Our results provide a possible explanation for discrepancies between experimental observations of fast particle–particle mixing and predictions of long mixing timescales in viscous particles and provide useful insights into description and treatment of SOA in aerosol models. 
    more » « less
  2. The ability of an atmospheric aerosol to take up water or to participate in heterogeneous reactions is highly influenced by its phase state – solid, semi-solid, or liquid. These changes in phase state can be predicted by glass transition temperature (Tg), as particles at temperatures below their Tg will show solid properties, while increasing the temperature above their Tg will allow for semi-solid and eventually liquid properties. Historically, measurements of the Tg of bulk materials have been studied in order to model the phase states of aerosols in the atmosphere; however, these methods only permit an estimation of aerosol Tg based on their bulk chemical composition. Determining the Tg of individual particles will allow for more accurate model predictions of aerosol phase state. Herein, we apply a recently developed method utilizing a nano-thermal analysis (nanoTA) module coupled to an atomic force microscope (AFM), to determine the Tg of individual secondary organic aerosol (SOA) particles generated from the reactive uptake of isoprene epoxydiol (IEPOX) onto acidic ammonium sulfate aerosol particles. NanoTA works by using a specialized AFM probe which can be heated while in contact with a particle of interest. As the temperature increases, the probe deflection will first increase due to thermal expansion of the particle followed by a decrease at its melting temperature (Tm). The Tg of the particle can then be determined from Tm using the Boyer–Beaman rule. We compared the Tg of IEPOX-derived SOA particles generated at relative humidity (RH) of 30, 65, and 80%, and found that increasing RH from 30 to 80% led to a decrease in average Tg of 22 K, indicating less viscous particles at higher RH conditions. Our measurements with this technique will allow for more accurate representations of the phase state of aerosols in the atmosphere. 
    more » « less
  3. Isoprene is one of the most common biogenic volatile organic compounds (BVOC) in the atmosphere, produced by many plants. Isoprene undergoes oxidation to form gaseous isoprene epoxydiols (IEPOX) under low-NOx conditions, which can lead to the formation of secondary organic aerosol (SOA) particles. SOA-containing particles affect climate by scattering and absorbing solar radiation or acting as cloud condensation nuclei (CCN). High concentrations of SOA are also associated with adverse health impacts in people. While in the atmosphere, IEPOX SOA particles continue to undergo reactions with atmospheric oxidants, including hydroxyl radical (OH). To isolate and probe this process, we studied atmospheric chemical processes in an aerosol chamber to better understand the evolution of heterogeneous OH oxidation of IEPOX-derived SOA particles. Since very little is understood about the structural and spectroscopic properties because of the complexity of their many sources and atmospheric processing, individual particle measurements are necessary to provide better understanding of the composition of IEPOX SOA. We injected particles composed of mixtures of ammonium sulfate and sulfuric acid across a range of acidities(PH = 0.5 – 2.5) and gas-phase IEPOX into the chamber to generate SOA. The SOA particles were then sent to an oxidation flow reactor, and exposed to different OH concentrations representative of aging of a number of days. We kept relative humidity (RH) constant at ~65%, the temperature was ~23 °C, and levels of oxidation were controlled by adjusting lamp intensity. After oxidized SOA was impacted on quartz substrates, we used single-particle Raman microspectroscopy to identify their functional group compositions. From the Raman vibrational spectra of submicron particles (~500-1000 nm aerodynamic diameter), we observed a distinct difference in core-shell morphology and composition: an organic outer layer and an aqueous-inorganic core. The core also has significantly more CH-stretch than the shell. Small changes were also observed with increasing oxidation, which are important to consider when predicting SOA particle evolution in the atmosphere. 
    more » « less
  4. Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx  ≡  NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013–2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls. 
    more » « less
  5. In isoprene‐rich regions, acid‐catalyzed multiphase reactions of isoprene epoxydiols (IEPOX) with inorganic sulfate (Sulfinorg) particles form secondary organic aerosol (IEPOX‐SOA), extensively converting Sulfinorg to lowervolatility particulate organosulfates (OSs), including 2‐ methyltetrol sulfates (2‐MTSs) and their dimers. Recently, we showed that heterogeneous hydroxyl radical (OH) oxidation of particulate 2‐MTSs generated multifunctional OS products. However, atmospheric models assume that OS‐rich IEPOX‐SOA particles remain unreactive towards heterogeneous OH oxidation, and limited laboratory studies have been conducted to examine the heterogeneous OH oxidation kinetics of full IEPOX‐SOA mixtures. Hence, this study investigated the kinetics and products resulting from heterogeneous OH oxidation of freshly‐generated IEPOXSOA in order to help derive model‐ready parameterizations. First, gas‐phase IEPOX was reacted with acidic Sulfinorg particles under dark conditions in order to form fresh IEPOX‐SOA particles. These particles were then subsequently aged at RH of 56% in an oxidation flow reactor at OH exposures ranging from 0~15 days of equivalent atmospheric exposure. Aged IEPOX‐SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) and collected onto Teflon filters for off‐line molecular‐level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high‐resolution quadrupole time‐offlight mass spectrometry (HILIC/ESI‐HR‐QTOFMS). Our results show that heterogeneous OH oxidation only caused a 7% decay of IEPOX‐SOA by 10 days exposure, likely owing to the inhibition of reactive uptake of OH as fresh IEPOXSOA particles have an inorganic core‐organic shell morphology. A significantly higher fraction of IEPOX‐SOA (~37%) decayed by 15 days exposure, likely due to the increasing reactive uptake of OH as IEPOX‐SOA become more liquid‐like with aging. Freshly‐generated IEPOX‐SOA constituents exhibited varying degrees of aging with 2‐MTSdimers being the most reactive, followed by 2‐MTSs and 2‐ methyltetrols (2‐MTs), respectively. Notably, extensive amounts of previously characterized particle‐phase products in ambient fine aerosols were detected in our laboratory‐aged IEPOX‐SOA samples. 
    more » « less