skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Demonstration of Chestnut: An In-memory Data Layout Designer for Database Applications
This demonstration showcases Chestnut, a data layout generator for in-memory object-oriented database applications. Given an application and a memory budget, Chestnut generates a customized in-memory data layout and the corresponding query plans that are specialized for the application queries. Our demo will let users design and improve simple web applications using Chestnut. Users can view the Chestnut-generated data layouts using a custom visualization system, which will allow users to see how the application parameters affect Chestnut's design. Finally, users will be able to run queries generated by the application via the customized query plans generated by Chestnut or traditional relational query engines, and can compare the results and observe the speedup achieved by the Chestnut-generated query plans.  more » « less
Award ID(s):
2027575 1955488
PAR ID:
10226218
Author(s) / Creator(s):
Date Published:
Journal Name:
ACM SIGMOD Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Analytical database systems are typically designed to use a column-first data layout to access only the desired fields. On the other hand, storing data row-first works great for accessing, inserting, or updating entire rows. Transforming rows to columns at runtime is expensive, hence, many analytical systems ingest data in row-first form and transform it in the background to columns to facilitate future analytical queries. How will this design change if we can always efficiently access only the desired set of columns? To address this question, we present a radically new approach to data transformation from rows to columns. We build upon recent advancements in embedded platforms with re-programmable logic to design native in-memory access on rows and columns. Our approach, termed Relational Memory (RM), relies on an FPGA-based accelerator that sits between the CPU and main memory and transparently transforms base data to any group of columns with minimal overhead at runtime. This design allows accessing any group of columns as if it already exists in memory. We implement and deploy RM in real hardware, and we show that we can access the desired columns up to 1.63× faster compared to a row-wise layout, while matching the performance of pure columnar access for low projectivity, and outperforming it by up to 2.23× as projectivity (and tuple reconstruction cost) increases. Overall, RM allows the CPU to access the optimal data layout, radically reducing unnecessary data movement without high data transformation costs, thus, simplifying software complexity and physical design, while accelerating query execution. 
    more » « less
  2. A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a profound impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore’s law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage component to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which has a profound impact on the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy allowing for better hardware utilization, and ultimately better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware, as well as the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control. 
    more » « less
  3. A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a significant impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore's law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage components to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which profoundly impacts the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy, allowing for better hardware utilization and, ultimately, better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware and the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control. 
    more » « less
  4. Author Name Disambiguation (AND) is the task of clustering unique author names from publication records in scholarly or related databases. Although AND has been extensively studied and has served as an important preprocessing step for several tasks (e.g. calculating bibliometrics and scientometrics for authors), there are few publicly available tools for disambiguation in large-scale scholarly databases. Furthermore, most of the disambiguated data is embedded within the search engines of the scholarly databases, and existing application programming interfaces (APIs) have limited features and are often unavailable for users for various reasons. This makes it difficult for researchers and developers to use the data for various applications (e.g. author search) or research. Here, we design a novel, web-based, RESTful API for searching disambiguated authors, using the PubMed database as a sample application. We offer two type of queries, attribute-based queries and record-based queries which serve different purposes. Attribute-based queries retrieve authors with the attributes available in the database. We study different search engines to find the most appropriate one for processing attribute-based queries. Record-based queries retrieve authors that are most likely to have written a query publication provided by a user. To accelerate record-based queries, we develop a novel algorithm that has a fast record-to-cluster match. We show that our algorithm can accelerate the query by a factor of 4.01 compared to a baseline naive approach. 
    more » « less
  5. An increasing number of applications in all aspects of society rely on data. Despite the long line of research in data cleaning and repairs, data correctness has been an elusive goal. Errors in the data can be extremely disruptive, and are detrimental to the effectiveness and proper function of data-driven applications. Even when data is cleaned, new errors can be introduced by applications and users who interact with the data. Subsequent valid updates can obscure these errors and propagate them through the dataset causing more discrepancies. Any discovered errors tend to be corrected superficially, on a case-by-case basis, further obscuring the true underlying cause, and making detection of the remaining errors harder. In this demo proposal, we outline the design of QFix, a query-centric framework that derives explanations and repairs for discrepancies in relational data based on potential errors in the queries that operated on the data. This is a marked departure from traditional data-centric techniques that directly fix the data. We then describe how users will use QFix in a demonstration scenario. Participants will be able to select from a number of transactional benchmarks, introduce errors into the queries that are executed, and compare the fixes to the queries proposed by QFix as well as existing alternative algorithms such as decision trees. 
    more » « less