skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating brown adipose tissue activity for a study of hot flashes [Abstract]
This presentation compares methods of estimating brown adipose tissue (BAT). As part of an ongoing study of BAT activity in relation to hot flashes, we asked women aged 45-55 to place their hand in cool (17oC) water. We took a thermal image of each woman (Flir camera) before and after the cooling of her hand. To estimate BAT activity, we compared the change in temperature in the supraclavicular area with a control area. Initially, we used a point on the mid-sternum as the control. Because we were concerned that there may be BAT tissue along the sternum, we also tried a control region on the mid-right arm. We used two equations to estimate BAT activity. The first computed the difference in maximum supraclavicular temperature (SCT) minus the difference in the control temperature [(PostMaxSupraclavicular – PreMaxSupraclavicular) - (PostControlMean - PreControlMean)]. Mean BAT estimated from the maximum SCT and arm temperature was higher (0.80, s.d. 0.51, range 0 to 2.10) than from the maximum SCT and sternal temperature (0.63, s.d. 0.45, range 0 to 1.70). There was no relationship between biceps skinfold and arm temperature, or between other anthropometric measures (summed skinfolds, BMI, percent body fat) and estimates of BAT. The sample size is, to date, too small to draw conclusions (n=36), but as the reported severity of hot flashes increased (“none,” “a little,” “somewhat,” “a lot”) the mean BAT estimated with the sternal control also increased (0.49, 0.65, 0.68, 0.74). This was not true when the arm was used as the control. Support: NSF #BCS-1848330  more » « less
Award ID(s):
1848330 1852441
PAR ID:
10226329
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Journal of Human Biology
Volume:
33
Issue:
S1
ISSN:
1042-0533
Page Range / eLocation ID:
40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-reported and biometrically measured hot flashes in relation to ambient temperature and humidity Lynnette L. Sievert, PhD1, Sofiya Shreyer, MA,1 Daniel E. Brown, PhD2 1Anthropology, UMass Amherst, MA; 2Anthropology, University of Hawaii at Hilo, HI Objective: Warm ambient temperatures provoke hot flashes in the laboratory, but outside the laboratory the temperature to hot flash relationship is less consistent. A study in Bangladesh and London found that temperature and humidity at 12:00 and 18:00 were not associated with self-reported or biometrically measured hot flashes. However, in Spain and three South American countries, higher temperatures and humidities were associated with more frequent and problematic hot flashes. The study reported here differs from previous work in that we asked women to carry an ambulatory temperature and humidity monitor while wearing an ambulatory hot flash monitor. The purpose of this study was to examine the relationship between concurrent temperature, humidity, and hot flash experience. We hypothesized more frequent hot flashes with higher ambient temperatures. Design: Women aged 45 to 55 years were drawn from western Massachusetts for an ongoing cross-sectional study (n=195) from October through April (2019-2023). Exclusion criteria included use of medications that dampen hot flashes. Hot flashes were queried with a semi-structured questionnaire: During the past two weeks, have you been bothered by hot flashes (not at all, a little, somewhat, a lot)? Currently, how often do they occur (from less than 1/month to 5+ times/day, scored 0-8)? Hot flashes were also assessed by sternal skin conductance using a Biolog ambulatory hot flash monitor (3991x/1-SCL, UFI, Morro Bay, CA). Subjective hot flashes during the 24-hour study period were recorded with buttons on the hot flash monitor. Ambient temperature and humidity were continuously recorded with the GSP-6 Temperature and Humidity Data Logger Recorder (Elitech Technology, San Jose, CA). Menopausal status was categorized as pre-, peri- (change in cycle length >6 days) and post- (absence of menses for 12 months). Univariate relationships between temperature (maximum, minimum, mean), humidity (maximum, minimum, mean), and hot flashes (yes/no) were examined by t-tests. Temperature, humidity, and hot flash bothersomeness were examined by ANOVA. Pearson correlations were used to evaluate temperature, humidity, and hot flash frequencies (from the questionnaire and Biolog monitor). Logistic regression was also applied to examine temperature and humidity measures in relation to hot flashes while adjusting for menopausal status. Results: Mean ambient temperatures ranged from 16.3 to 30.1oC (mean 24.5oC, s.d. 2.8); mean humidities ranged from 18.9 to 68.6% (mean 40.8%, s.d. 9.2). Minimum temperature was positively associated with minimum (r=0.508, p<0.001) and mean (r=0.316, p<0.001) measures of humidity. Hot flash bothersomeness was described as not at all (31%), a little (23%), somewhat (23%), and a lot (24%). In univariate analyses, maximum, minimum, and mean temperatures and humidity levels were not associated with hot flashes (yes/no) or with the bothersomeness of hot flashes. Temperature measures were not correlated with current frequency of hot flashes or with the frequency of objective or subjective hot flashes during the study period. However, the current frequency of hot flashes was negatively correlated with minimum (r=-0.205, p<0.01) and mean (r=-0.196, p<0.01) levels of humidity, so that as humidity levels increased, the likelihood of hot flashes decreased. Although participants were keen to wear the monitor for 24-hours, the Biolog monitor quit during 38% of the studies. In the majority of cases, participants restarted the monitor. Compared to monitors that continued to function, monitors that quit were more likely to be worn when minimum temperatures were lower (mean 6.8oC vs. 8.9 oC, p=0.03), minimum humidity levels were lower (mean 17.2% vs. 22.6%, p<0.001), and mean humidity levels were lower (mean 37.2% vs. 43.0%, p<0.001). Conclusion: The hypothesized positive relationship between temperature and hot flashes was not supported. Instead, as humidity levels increased, the likelihood of hot flashes decreased. This preliminary study will be followed by syncing of the temperature, humidity, and hot flash data in order to study how changes in temperature and/or humidity may provoke hot flashes. Funding: NSF Grant #BCS-1848330 
    more » « less
  2. Abstract Background Individuals with hemiparesis post-stroke often have difficulty with tasks requiring upper extremity (UE) intra- and interlimb use, yet methods to quantify both are limited. Objective To develop a quantitative yet sensitive method to identify distinct features of UE intra- and interlimb use during task performance. Methods Twenty adults post-stroke and 20 controls wore five inertial sensors (wrists, upper arms, sternum) during 12 seated UE tasks. Three sensor modalities (acceleration, angular rate of change, orientation) were examined for three metrics (peak to peak amplitude, time, and frequency). To allow for comparison between sensor data, the resultant values were combined into one motion parameter, per sensor pair, using a novel algorithm. This motion parameter was compared in a group-by-task analysis of variance as a similarity score (0–1) between key sensor pairs: sternum to wrist, wrist to wrist, and wrist to upper arm. A use ratio (paretic/non-paretic arm) was calculated in persons post-stroke from wrist sensor data for each modality and compared to scores from the Adult Assisting Hand Assessment (Ad-AHA Stroke) and UE Fugl-Meyer (UEFM). Results A significant group × task interaction in the similarity score was found for all key sensor pairs. Post-hoc tests between task type revealed significant differences in similarity for sensor pairs in 8/9 comparisons for controls and 3/9 comparisons for persons post stroke. The use ratio was significantly predictive of the Ad-AHA Stroke and UEFM scores for each modality. Conclusions Our algorithm and sensor data analyses distinguished task type within and between groups and were predictive of clinical scores. Future work will assess reliability and validity of this novel metric to allow development of an easy-to-use app for clinicians. 
    more » « less
  3. The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians. 
    more » « less
  4. Ultrasonic bat detectors are useful for research and monitoring purposes to assess occupancy and relative activity of bat communities. Environmental “clutter” such as tree boles and foliage can affect the recording quality and identification of bat echolocation calls collected using ultrasonic detectors. It can also affect the transmission of calls and recognition by bats when using acoustic lure devices to attract bats to mist-nets. Bat detectors are often placed in forests, yet automatic identification programs are trained on call libraries using echolocation passes recorded largely from open spaces. Research indicates that using clutter-recorded calls can increase classification accuracy for some bat species and decrease accuracy for others, but a detailed understanding of how clutter impacts the recording and identification of echolocation calls remains elusive. To clarify this, we experimentally investigated how two measures of clutter (i.e., total basal area and number of stems of simulated woody growth, as well as recording angle) affected the recording and classification of a synthesized echolocation signal under controlled conditions in an anechoic chamber. Recording angle (i.e., receiver position relative to emitter) significantly influenced the probability of correct classification and differed significantly for many of the call parameters measured. The probability of recording echo pulses was also a function of clutter but only for the detector angle at 0° from the emitter that could receive deflected pulses. Overall, the two clutter metrics were overshadowed by proximity and angle of the receiver to the sound source but some deviations from the synthesized call in terms of maximum, minimum, and mean frequency parameters were observed. Results from our work may aid efforts to better understand underlying environmental conditions that produce false-positive and -negative identifications for bat species of interest and how this could be used to adjust survey accuracy estimates. Our results also help pave the way for future research into the development of acoustic lure technology by exploring the effects of environmental clutter on ultrasound transmission. 
    more » « less
  5. Abstract. Lightning is affected by many factors, many of which are not routinely measured, well understood, or accounted for in physical models. Several commonly used machine learning (ML) models have been applied to analyze the relationship between Atmospheric Radiation Measurement (ARM) data and lightning data from the Earth Networks Total Lightning Network (ENTLN) in order to identify important variables affecting lightning occurrence in the vicinity of the Southern Great Plains (SGP) ARM site during the summer months (June, July, August and September) of 2012 to 2020. Testing various ML models, we found that the random forest model is the best predictor among common classifiers. When convective clouds were detected, it predicts lightning occurrence with an accuracy of 76.9 % and an area under the curve (AUC) of 0.850. Using this model, we further ranked the variables in terms of their effectiveness in nowcasting lightning and identified geometric cloud thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors. The contrast in meteorological variables between no-lightning and frequent-lightning periods was examined for hours with CAPE values conducive to thunderstorm formation. Besides the variables considered for the ML models, surface variables and mid-altitude variables (e.g., equivalent potential temperature and minimum equivalent potential temperature, respectively) have statistically significant contrasts between no-lightning and frequent-lightning hours. For example, the minimum equivalent potential temperature from 700 to 500 hPa is significantly lower during frequent-lightning hours compared with no-lightning hours. Finally, a notable positive relationship between the intracloud (IC) flash fraction and the square root of CAPE (CAPE) was found, suggesting that stronger updrafts increase the height of the electrification zone, resulting in fewer flashes reaching the surface and consequently a greater IC flash fraction. 
    more » « less