skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-reported and biometrically measured hot flashes in relation to ambient temperature and humidity.
Self-reported and biometrically measured hot flashes in relation to ambient temperature and humidity Lynnette L. Sievert, PhD1, Sofiya Shreyer, MA,1 Daniel E. Brown, PhD2 1Anthropology, UMass Amherst, MA; 2Anthropology, University of Hawaii at Hilo, HI Objective: Warm ambient temperatures provoke hot flashes in the laboratory, but outside the laboratory the temperature to hot flash relationship is less consistent. A study in Bangladesh and London found that temperature and humidity at 12:00 and 18:00 were not associated with self-reported or biometrically measured hot flashes. However, in Spain and three South American countries, higher temperatures and humidities were associated with more frequent and problematic hot flashes. The study reported here differs from previous work in that we asked women to carry an ambulatory temperature and humidity monitor while wearing an ambulatory hot flash monitor. The purpose of this study was to examine the relationship between concurrent temperature, humidity, and hot flash experience. We hypothesized more frequent hot flashes with higher ambient temperatures. Design: Women aged 45 to 55 years were drawn from western Massachusetts for an ongoing cross-sectional study (n=195) from October through April (2019-2023). Exclusion criteria included use of medications that dampen hot flashes. Hot flashes were queried with a semi-structured questionnaire: During the past two weeks, have you been bothered by hot flashes (not at all, a little, somewhat, a lot)? Currently, how often do they occur (from less than 1/month to 5+ times/day, scored 0-8)? Hot flashes were also assessed by sternal skin conductance using a Biolog ambulatory hot flash monitor (3991x/1-SCL, UFI, Morro Bay, CA). Subjective hot flashes during the 24-hour study period were recorded with buttons on the hot flash monitor. Ambient temperature and humidity were continuously recorded with the GSP-6 Temperature and Humidity Data Logger Recorder (Elitech Technology, San Jose, CA). Menopausal status was categorized as pre-, peri- (change in cycle length >6 days) and post- (absence of menses for 12 months). Univariate relationships between temperature (maximum, minimum, mean), humidity (maximum, minimum, mean), and hot flashes (yes/no) were examined by t-tests. Temperature, humidity, and hot flash bothersomeness were examined by ANOVA. Pearson correlations were used to evaluate temperature, humidity, and hot flash frequencies (from the questionnaire and Biolog monitor). Logistic regression was also applied to examine temperature and humidity measures in relation to hot flashes while adjusting for menopausal status. Results: Mean ambient temperatures ranged from 16.3 to 30.1oC (mean 24.5oC, s.d. 2.8); mean humidities ranged from 18.9 to 68.6% (mean 40.8%, s.d. 9.2). Minimum temperature was positively associated with minimum (r=0.508, p<0.001) and mean (r=0.316, p<0.001) measures of humidity. Hot flash bothersomeness was described as not at all (31%), a little (23%), somewhat (23%), and a lot (24%). In univariate analyses, maximum, minimum, and mean temperatures and humidity levels were not associated with hot flashes (yes/no) or with the bothersomeness of hot flashes. Temperature measures were not correlated with current frequency of hot flashes or with the frequency of objective or subjective hot flashes during the study period. However, the current frequency of hot flashes was negatively correlated with minimum (r=-0.205, p<0.01) and mean (r=-0.196, p<0.01) levels of humidity, so that as humidity levels increased, the likelihood of hot flashes decreased. Although participants were keen to wear the monitor for 24-hours, the Biolog monitor quit during 38% of the studies. In the majority of cases, participants restarted the monitor. Compared to monitors that continued to function, monitors that quit were more likely to be worn when minimum temperatures were lower (mean 6.8oC vs. 8.9 oC, p=0.03), minimum humidity levels were lower (mean 17.2% vs. 22.6%, p<0.001), and mean humidity levels were lower (mean 37.2% vs. 43.0%, p<0.001). Conclusion: The hypothesized positive relationship between temperature and hot flashes was not supported. Instead, as humidity levels increased, the likelihood of hot flashes decreased. This preliminary study will be followed by syncing of the temperature, humidity, and hot flash data in order to study how changes in temperature and/or humidity may provoke hot flashes. Funding: NSF Grant #BCS-1848330  more » « less
Award ID(s):
1848330
PAR ID:
10457302
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Menopause
Volume:
29
Issue:
12
ISSN:
1530-0374
Page Range / eLocation ID:
1485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This presentation compares methods of estimating brown adipose tissue (BAT). As part of an ongoing study of BAT activity in relation to hot flashes, we asked women aged 45-55 to place their hand in cool (17oC) water. We took a thermal image of each woman (Flir camera) before and after the cooling of her hand. To estimate BAT activity, we compared the change in temperature in the supraclavicular area with a control area. Initially, we used a point on the mid-sternum as the control. Because we were concerned that there may be BAT tissue along the sternum, we also tried a control region on the mid-right arm. We used two equations to estimate BAT activity. The first computed the difference in maximum supraclavicular temperature (SCT) minus the difference in the control temperature [(PostMaxSupraclavicular – PreMaxSupraclavicular) - (PostControlMean - PreControlMean)]. Mean BAT estimated from the maximum SCT and arm temperature was higher (0.80, s.d. 0.51, range 0 to 2.10) than from the maximum SCT and sternal temperature (0.63, s.d. 0.45, range 0 to 1.70). There was no relationship between biceps skinfold and arm temperature, or between other anthropometric measures (summed skinfolds, BMI, percent body fat) and estimates of BAT. The sample size is, to date, too small to draw conclusions (n=36), but as the reported severity of hot flashes increased (“none,” “a little,” “somewhat,” “a lot”) the mean BAT estimated with the sternal control also increased (0.49, 0.65, 0.68, 0.74). This was not true when the arm was used as the control. Support: NSF #BCS-1848330 
    more » « less
  2. Menopausal hot flashes contribute to poor sleep and negatively impact quality of life. The Embr Wave is a noninvasive wearable thermal device that applies personalized cooling and warming to thermoreceptors on the inside of the wrist. New modes with cooling and warming sessions specifically for sleep and hot flashes were introduced on the Embr Wave. This study evaluated the feasibility and preliminary efficacy of nighttime use of the Embr Wave for managing hot flashes and sleep during menopause. 
    more » « less
  3. Abstract In an effort to improve our knowledge on the horizontal and vertical distribution of lightning initiation and propagation, ~500 multicells (producing a total of 72,619 flashes), 27 mesoscale convective systems (producing 214,417 flashes) and 23 supercells (producing 169,861 flashes) that occurred over northern Alabama and southern Tennessee were analyzed using data from the North Alabama Lightning Mapping Array and the Multi‐Radar Multi‐Sensor suite. From this analysis, two‐dimensional (2‐D) histograms of where flashes initiated and propagated relative to radar reflectivity and altitude were created for each storm type. The peak of the distributions occurred between 8.0 and 10.0 km (−24.0 to −38.5 °C) and between 30 and 35 dBZfor flashes that initiated within multicellular storms. For flashes that initiated within mesoscale convective systems, these peaks were 8.0–9.0 km (−27.1 to −34.6 °C) and 30–35 dBZ, respectively, and for supercells, they were 10.0–12.0 km (−42.6 to −58.1 °C) and 35–40 dBZ, respectively. The 2‐D histograms for the flash propagations were slightly different than for the flash initiations and showed that flashes propagated in lower reflectivities as compared to where they initiated. The 2‐D histograms were also compared to test cases; the root‐mean‐square errors and the Pearson product moment correlation coefficient (R) were calculated with several of the comparisons havingRvalues >0.7 while the root‐mean‐square errors were always ≤0.017 (≤10%), irrespective of storm type. Finally, the mean flash sizes for the multicell, mesoscale convective system, and supercell flashes were 8.3, 9.9, and 7.4 km, respectively. 
    more » « less
  4. null (Ed.)
    Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission. 
    more » « less
  5. Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s. 
    more » « less