Let P be a set of n points in ℝ^d in general position. A median hyperplane (roughly) splits the point set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P. We present exact algorithms for computing the yolk and the egg of a point set, both running in expected time O(n^(d-1) log n). The running time of the new algorithm is a polynomial time improvement over existing algorithms. We also present algorithms for several related problems, such as computing the Tukey and center balls of a point set, among others. more »« less
Har-Peled, Sariel; Robson, Eliot W
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Bodlaender, Hans L
(Ed.)
Given a set P ⊂ ℝ^d of n points, with diameter Δ, and a parameter δ ∈ (0,1), it is known that there is a partition of P into sets P_1, …, P_t, each of size O(1/δ²), such that their convex hulls all intersect a common ball of radius δΔ. We prove that a random partition, with a simple alteration step, yields the desired partition, resulting in a (randomized) linear time algorithm (i.e., O(dn)). We also provide a deterministic algorithm with running time O(dn log n). Previous proofs were either existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm and its proof of correctness are significantly simpler than previous work, and the constants are slightly better. We also include a number of applications and extensions using the same central ideas. For example, we provide a linear time algorithm for computing a "fuzzy" centerpoint, and prove a no-dimensional weak ε-net theorem with an improved constant.
Wang, Haitao
(, Journal of computational geometry)
Given a set $$P$$ of $$n$$ points in the plane, we consider the problem of computing the number of points of $$P$$ in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques for simplex range searching in the plane can be adapted to this problem. For example, by adapting Matoušek's results, we can build a data structure of $O(n)$ space in $$O(n^{1+\delta})$$ time (for any $$\delta>0$$) so that each query can be answered in $$O(\sqrt{n})$$ time; alternatively, we can build a data structure of $$O(n^2/\log^2 n)$$ space with $$O(n^{1+\delta})$$ preprocessing time (for any $$\delta>0$$) and $$O(\log n)$$ query time. Our techniques lead to improvements for several other classical problems in computational geometry. 1. Given a set of $$n$$ unit disks and a set of $$n$$ points in the plane, the batched unit-disk range counting problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir, 1997] solved the problem in $$O(n^{4/3}\log n)$$ time. We give a new algorithm of $$O(n^{4/3})$$ time, which is optimal as it matches an $$\Omega(n^{4/3})$$-time lower bound. For small $$\chi$$, where $$\chi$$ is the number of pairs of unit disks that intersect, we further improve the algorithm to $$O(n^{2/3}\chi^{1/3}+n^{1+\delta})$$ time, for any $$\delta>0$$. 2. The above result immediately leads to an $$O(n^{4/3})$$ time optimal algorithm for counting the intersecting pairs of circles for a set of $$n$$ unit circles in the plane. The previous best algorithms solve the problem in $$O(n^{4/3}\log n)$$ deterministic time [Katz and Sharir, 1997] or in $$O(n^{4/3}\log^{2/3} n)$$ expected time by a randomized algorithm [Agarwal, Pellegrini, and Sharir, 1993]. 3. Given a set $$P$$ of $$n$$ points in the plane and an integer $$k$$, the distance selection problem is to find the $$k$$-th smallest distance among all pairwise distances of $$P$$. The problem can be solved in $$O(n^{4/3}\log^2 n)$$ deterministic time [Katz and Sharir, 1997] or in $$O(n\log n+n^{2/3}k^{1/3}\log^{5/3}n)$$ expected time by a randomized algorithm [Chan, 2001]. Our new randomized algorithm runs in $$O(n\log n +n^{2/3}k^{1/3}\log n)$$ expected time. 4. Given a set $$P$$ of $$n$$ points in the plane, the discrete $$2$$-center problem is to compute two smallest congruent disks whose centers are in $$P$$ and whose union covers $$P$$. An $$O(n^{4/3}\log^5 n)$$-time algorithm was known [Agarwal, Sharir, and Welzl, 1998]. Our techniques yield a deterministic algorithm of $$O(n^{4/3}\log^{10/3} n\cdot (\log\log n)^{O(1)})$$ time and a randomized algorithm of $$O(n^{4/3}\log^3 n\cdot (\log\log n)^{1/3})$$ expected time.
Sheehy, Donald R.
(, Proceedings of the 32nd Canadian Conference on Computational Geometry)
Keil, Mark; Mondal, Debajyoti
(Ed.)
We adapt and generalize a heuristic for k-center clustering to the permutation case, where every pre x of the ordering is a guaranteed approximate solution. The one-hop greedy permutations work by choosing at each step the farthest unchosen point and then looking in its local neighborhood for a point that covers the most points at a certain scale. This balances the competing demands of reducing the coverage radius and also covering as many points as possible. This idea first appeared in the work of Garcia-Diaz et al. and their algorithm required O(n2 log n) time for a fi xed k (i.e. not the whole permutation). We show how to use geometric data structures to approximate the entire permutation in O(n log D) time for metrics sets with spread D. Notably, this running time is asymptotically the same as the running time for computing the ordinary greedy permutation.
Abboud, Amir; Grandoni, Fabrizio; Vassilevska_Williams, Virginia
(, ACM Transactions on Algorithms)
Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological systems, transportation networks, and so forth. Differentcentralitymeasures have been proposed to capture the notion of node importance. For example, thecenterof a graph is a node that minimizes the maximum distance to any other node (the latter distance is theradiusof the graph). Themedianof a graph is a node that minimizes the sum of the distances to all other nodes. Informally, thebetweenness centralityof a nodewmeasures the fraction of shortest paths that havewas an intermediate node. Finally, thereach centralityof a nodewis the smallest distancersuch that anys-tshortest path passing throughwhas eithersortin the ball of radiusraroundw. The fastest known algorithms to compute the center and the median of a graph and to compute the betweenness or reach centrality even of a single node take roughly cubic time in the numbernof nodes in the input graph. It is open whether these problems admit truly subcubic algorithms, i.e., algorithms with running time Õ(n3-δ) for some constant δ > 0.1 We relate the complexity of the mentioned centrality problems to two classical problems for which no truly subcubic algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that Radius, Median, and Betweenness Centrality areequivalent under subcubic reductionsto APSP, i.e., that a truly subcubic algorithm for any of these problems implies a truly subcubic algorithm for all of them. We then show that Reach Centrality is equivalent to Diameter under subcubic reductions. The same holds for the problem of approximating Betweenness Centrality within any finite factor. Thus, the latter two centrality problems could potentially be solved in truly subcubic time, even if APSP required essentially cubic time. On the positive side, our reductions for Reach Centrality imply an improved Õ(Mnω)-time algorithm for this problem in case of non-negative integer weights upper bounded byM, where ω is a fast matrix multiplication exponent.
Liu, Gang; Wang, Haitao
(, Proceedings of the 18th Algorithms and Data Structures Symposium (WADS 2023))
Given a set P of n weighted points and a set S of m disks in the plane, the hitting set problem is to compute a subset 𝑃′ of points of P such that each disk contains at least one point of 𝑃′ and the total weight of all points of 𝑃′ is minimized. The problem is known to be NP-hard. In this paper, we consider a line-constrained version of the problem in which all disks are centered on a line ℓ. We present an 𝑂((𝑚+𝑛)log(𝑚+𝑛)+𝜅log𝑚) time algorithm for the problem, where 𝜅 is the number of pairs of disks that intersect. For the unit-disk case where all disks have the same radius, the running time can be reduced to 𝑂((𝑛+𝑚)log(𝑚+𝑛)). In addition, we solve the problem in 𝑂((𝑚+𝑛)log(𝑚+𝑛)) time in the 𝐿∞ and 𝐿1 metrics, in which a disk is a square and a diamond, respectively.
Har-Peled, Sariel, and Jones, Mitchell. Fast Algorithms for Geometric Consensuses. Retrieved from https://par.nsf.gov/biblio/10226334. 36th International Symposium on Computational Geometry, SoCG 2020 164.
Har-Peled, Sariel, & Jones, Mitchell. Fast Algorithms for Geometric Consensuses. 36th International Symposium on Computational Geometry, SoCG 2020, 164 (). Retrieved from https://par.nsf.gov/biblio/10226334.
Har-Peled, Sariel, and Jones, Mitchell.
"Fast Algorithms for Geometric Consensuses". 36th International Symposium on Computational Geometry, SoCG 2020 164 (). Country unknown/Code not available. https://par.nsf.gov/biblio/10226334.
@article{osti_10226334,
place = {Country unknown/Code not available},
title = {Fast Algorithms for Geometric Consensuses},
url = {https://par.nsf.gov/biblio/10226334},
abstractNote = {Let P be a set of n points in ℝ^d in general position. A median hyperplane (roughly) splits the point set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P. We present exact algorithms for computing the yolk and the egg of a point set, both running in expected time O(n^(d-1) log n). The running time of the new algorithm is a polynomial time improvement over existing algorithms. We also present algorithms for several related problems, such as computing the Tukey and center balls of a point set, among others.},
journal = {36th International Symposium on Computational Geometry, SoCG 2020},
volume = {164},
author = {Har-Peled, Sariel and Jones, Mitchell},
editor = {Cabello, Sergio and Chen, Danny}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.