This paper develops a unified linear theory of cross field plasma instabilities, including the Farley–Buneman, electron thermal, and ion thermal instabilities, in spatially uniform collisional plasmas with partially unmagnetized multi-species ions. Collisional plasma instabilities in weakly ionized, highly dissipative, weakly magnetized plasmas play an important role in the lower Earth's ionosphere and may be of importance in other planetary ionospheres, stellar atmospheres, cometary tails, molecular clouds, accretion disks, etc. In the Earth's ionosphere, these collisional plasma instabilities cause intense electron heating. In the solar chromosphere, they can do the same—an effect originally suggested from spectroscopic observations and modeling. Based on a simplified 5-moment multi-fluid model, the theoretical analysis presented in this paper produces the linear dispersion relation for the combined Thermal Farley–Buneman Instability with an important long-wavelength limit analyzed in detail. This limit provides an easy interpretation of different instability drivers and wave dissipation. This analysis of instability, combined with simulations, will enable us to better understand plasma waves and turbulence in these commonly occurring collisional space plasmas.
more »
« less
Simulations of ion–dust streaming instability in a highly collisional plasma
The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality.
more »
« less
- Award ID(s):
- 1740203
- PAR ID:
- 10226367
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 86
- Issue:
- 6
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The streaming instability, a promising mechanism to drive planetesimal formation in dusty protoplanetary discs, relies on aerodynamic drag naturally induced by the background radial pressure gradient. This gradient should vary in discs, but its effect on the streaming instability has not been sufficiently explored. For this purpose, we use numerical simulations of an unstratified disc to study the non-linear saturation of the streaming instability with mono-disperse dust particles and survey a wide range of gradients for two distinct combinations of the particle stopping time and the dust-to-gas mass ratio. As the gradient increases, we find most kinematic and morphological properties increase but not always in linear proportion. The density distributions of tightly coupled particles are insensitive to the gradient whereas marginally coupled particles tend to concentrate by more than an order of magnitude as the gradient decreases. Moreover, dust–gas vortices for tightly coupled particles shrink as the gradient decreases, and we note higher resolutions are required to trigger the instability in this case. In addition, we find various properties at saturation that depend on the gradient may be observable and may help reconstruct models of observed discs dominated by streaming turbulence. In general, increased dust diffusion from stronger gradients can lower the concentration of dust filaments and can explain the higher solid abundances needed to trigger strong particle clumping and the reduced planetesimal formation efficiency previously found in vertically stratified simulations.more » « less
-
A molecular dynamics simulation of ion flow past dust grains is used to investigate the interaction between a pair of charged dust particles and streaming ions. The charging and dynamics of the grains are coupled and derived from the ion–dust interactions, allowing for detailed analysis of the ion wakefield structure and wakefield-mediated interaction as the dust particles change position. When a downstream grain oscillates vertically within the wake, it decharges by up to 30% as it approaches the upstream grain and then recharges as it recedes. There is an apparent hysteresis in charging depending on whether the grain is approaching or receding from a region of higher ion density. Maps of the ion-mediated dust–dust interaction force show that the radial extent of the wake region, which provides an attractive restoring force on the downstream particle, increases as the ion flow velocity decreases, though the restoring effect becomes weaker. As also shown in recent numerical results, there is no net attractive vertical force between the two grains. Instead, the reduced ion drag on the downstream particle allows it to “draft” in the wakefield of the upstream particle.more » « less
-
Abstract We present the first observations of electrostatic solitary waves with electrostatic potential of negative polarity around a fast plasma flow in the Earth's plasma sheet. The solitary waves are observed aboard four Magnetospheric Multiscale spacecraft, which allowed accurately estimating solitary wave properties. Based on a data set of 153 solitary waves, we show that they are locally one‐dimensional Debye‐scale structures with amplitudes up to 20% of local electron temperature and they propagate at plasma frame speeds ranging from a tenth to a few ion‐acoustic speeds at arbitrary angles to the local magnetic field. The solitary waves are associated with multi‐component proton distributions and their velocities are around those of a beam‐like proton population. We argue that the solitary waves are ion holes, nonlinear structures produced by ion‐streaming instabilities, and conclude that once ions are not magnetized, ion holes can propagate oblique to local magnetic field.more » « less
-
Abstract We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale, magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability. The PIC simulations reveal a nonlinear cyclic evolution of firehose bursts interspersed by periods of stable cooling. We compare the SFHI for electron–positron and electron–ion plasmas. As a byproduct of the growing electron-firehose magnetic-field fluctuations, magnetized ions gain a pressure anisotropy opposite to that of the electrons. If these ions are relativistically hot, we find that they also experience cooling due to collisionless thermal coupling with the electrons, which we argue is mediated by a secondary ion-cyclotron instability. We suggest that the SFHI may be activated in a number of astrophysical scenarios, such as within ejecta from black hole accretion flows and relativistic jets, where the redistribution of energetic electrons from low to high pitch angles may cause transient bursts of radiation.more » « less
An official website of the United States government

