skip to main content


Title: Multisatellite Observations of Ion Holes in the Earth's Plasma Sheet
Abstract

We present the first observations of electrostatic solitary waves with electrostatic potential of negative polarity around a fast plasma flow in the Earth's plasma sheet. The solitary waves are observed aboard four Magnetospheric Multiscale spacecraft, which allowed accurately estimating solitary wave properties. Based on a data set of 153 solitary waves, we show that they are locally one‐dimensional Debye‐scale structures with amplitudes up to 20% of local electron temperature and they propagate at plasma frame speeds ranging from a tenth to a few ion‐acoustic speeds at arbitrary angles to the local magnetic field. The solitary waves are associated with multi‐component proton distributions and their velocities are around those of a beam‐like proton population. We argue that the solitary waves are ion holes, nonlinear structures produced by ion‐streaming instabilities, and conclude that once ions are not magnetized, ion holes can propagate oblique to local magnetic field.

 
more » « less
Award ID(s):
2026680
NSF-PAR ID:
10375597
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a statistical analysis of electrostatic solitary waves observed aboard Magnetospheric Multiscale spacecraft in the Earth's magnetosheath. Applying single‐spacecraft interferometry to several hundred solitary waves collected in about 2‐minute interval, we show that almost all of them have the electrostatic potential of positive polarity and propagate quasi‐parallel to the local magnetic field with plasma frame velocities of the order of 100 km/s. The solitary waves have typical parallel half‐widths from 10 to 100 m that is between 1 and 10 Debye lengths and typical amplitudes of the electrostatic potential from 10 to 200 mV that is between 0.01% and 1% of local electron temperature. The solitary waves are associated with quasi‐Maxwellian ion velocity distribution functions, and their plasma frame velocities are comparable with ion thermal speed and well below electron thermal speed. We argue that the solitary waves of positive polarity are slow electron holes and estimate the time scale of their acceleration, which occurs due to interaction with ions, to be of the order of one second. The observation of slow electron holes indicates that their lifetime was shorter than the acceleration time scale. We argue that multi‐spacecraft interferometry applied previously to these solitary waves is not applicable because of their too‐short spatial scales. The source of the slow electron holes and the role in electron‐ion energy exchange remain to be established. 
    more » « less
  2. Abstract

    Nonlinear ion-acoustic waves, ion holes, and electron holes have been observed on the Parker Solar Probe at a heliocentric distance of 35 solar radii. These time domain structures contain millisecond duration electric field spikes of several mV m−1. They are observed inside or at boundaries of switchbacks in the background magnetic field. Their presence in switchbacks indicates that both electron- and ion-streaming electrostatic instabilities occur there to thermalize electron and ion beams.

     
    more » « less
  3. Abstract

    We present a statistical analysis of >2,100 bipolar electrostatic solitary waves (ESWs) collected from 10 quasi‐perpendicular Earth's bow shock crossings by Magnetospheric Multiscale spacecraft. We developed and implemented a correction procedure for reconstruction of actual electric fields, velocities, and other properties of ESW, whose spatial scales are typically comparable with or smaller than spatial distance between voltage‐sensitive probes. We found that more than 95% of the ESW are of negative polarity with amplitudes typically below a few Volts and 0.1Te(5–30 V or 0.1–0.3Tefor a few percent of ESW), spatial scales of 10–100 m orλD–10λD, and velocities from a few tens to a few hundred km/s that is on the order of local ion‐acoustic speed. The spatial scales of ESW are correlated with local Debye lengthλD. The ESW have electric fields generally oblique to magnetic field and they propagate highly oblique to shock normalN; more than 80% of ESW propagate within 30° of the shock planeLM. In the shock plane, ESW typically propagates within a few tens of degrees of local magnetic field projectionBLMand preferentially opposite toN × BLM. We argue that the ESW of negative polarity are ion holes produced by ion‐ion streaming instabilities. We estimate ion hole lifetimes to be 10–100 ms, or 1–10 km in terms of traveling distance. The revealed statistical properties will be useful for quantitative studies of electron thermalization in the Earth's bow shock.

     
    more » « less
  4. Abstract

    We present analysis of electrostatic waves around the ramp of a quasi‐perpendicular Earth's bow shock observed by the Magnetospheric Multiscale spacecraft. The electrostatic waves have amplitudes up to 800 mV/m, which is the largest value ever reported in the Earth's bow shock. In contrast to previous studies, the electrostatic waves have large amplitudes of the electrostatic potential, up to 20 V or 20% of local electron temperature. The wavelengths are from 150 m to 3 km, that is from 15 to 300 Debye lengths and typically from 0.4 to 1.5 thermal electron gyroradii. Importantly, these waves can propagate not only quasi‐parallel or oblique, but also almost perpendicular to local magnetic field. The electrostatic waves are interpreted in terms of ion‐acoustic waves, although the presence of electron cyclotron harmonic waves cannot be entirely ruled out. These results suggest that electrostatic waves may strongly affect the dynamics of electrons in collisionless shocks.

     
    more » « less
  5. Abstract

    Parker Solar Probe measurements have recently shown that coherent fast magnetosonic and Alfvén ion-cyclotron waves are abundant in the solar wind and can be accompanied by higher-frequency electrostatic fluctuations. In this Letter we reveal the nonlinear process capable of channelling the energy of low-frequency electromagnetic to higher-frequency electrostatic fluctuations observed on board Parker Solar Probe. We present Hall-MHD simulations demonstrating that low-frequency electromagnetic fluctuations can resonate with the ion-sound mode, which results in steepening of plasma density fluctuations, electrostatic spikes, and harmonics in the electric field spectrum. The resonance can occur around the wavenumber determined by the ratio between local sound and Alfvén speeds, but only in the case ofobliquepropagation to the background magnetic field. The resonance wavenumber, its width, and steepening timescale are estimated, and all indicate that the revealed two-wave resonance can frequently occur in the solar wind. This process can be a potential channel of energy transfer from cyclotron resonant ions producing the electromagnetic fluctuations to Landau resonant ions and electrons absorbing the energy of the higher-frequency electrostatic fluctuations.

     
    more » « less