skip to main content


Title: Magnetic fabric and archaeomagnetic analyses of anthropogenic ash horizons in a cave sediment succession (Crvena Stijena site, Montenegro)
SUMMARY An archaeomagnetic, rock magnetic and magnetic fabric study has been carried out on seven anthropogenic ash horizons in the Middle Palaeolithic sedimentary level XXIV at the rock shelter of Crvena Stijena (‘Red Rock’), Montenegro. The study has multiple goals, including the identification of iron bearing minerals formed during combustion, assessment of the suitability of these combustion features for recording the Earth´s magnetic field direction, revelation of the magnetic fabric and its significance in the characterization of cave (rock shelter) burnt facies, and identification of post-burning alteration processes. Magnetite has been identified as the main ferromagnetic component of the ash. The ash layers exhibit a high thermomagnetic reversibility in contrast to the irreversible behaviour of their subjacent burnt black layers which is related to the different temperatures attained. Seven mean archaeomagnetic directions were obtained with acceptable statistical values indicating that these features recorded the field direction at the time of burning. However, some of them are out of the expected range of secular variation for mid-latitude regions suggesting post-burning alterations. The magnetic fabric of the ash was characterized by anisotropy of low field magnetic susceptibility measurements. Statistical analysis (box and whisker plot) of the basic anisotropy parameters, such as foliation, lineation, degree of anisotropy and the shape parameter, along with the alignment of the principal susceptibilities on stereoplots, revealed variation among the ash units. The diverse, oblate to prolate, lineated or strongly foliated, quasi-horizontally and vertically oriented fabrics of the units may indicate different slope processes, such as orientation by gravity, solifluction, run-off water, quasi-vertical migration of groundwater and post-burning/post-depositional alteration of the fabric by rockfall impact. In sum, the magnetic characterization of the ash layers has shown the occurrence of different post-burning alteration processes previously not identified at the site. Alteration processes in prehistoric combustion features are often identified from macroscopic observations but our study demonstrates that multiple processes can affect them and are usually unnoted because they take place on a microscopic scale. Their identification is critical for a correct chronological and cultural interpretation of a site (e.g. collection of samples for dating, stratigraphic displacement of remains), especially if significant alterations are involved. Magnetic methods are therefore a powerful but underutilized tool in palaeolithic research for the identification and evaluation of taphonomic processes affecting prehistoric fires.  more » « less
Award ID(s):
1758285
NSF-PAR ID:
10226392
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
224
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
795 to 812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the southeast side of the hotspot track, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the northwest side. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanological study. Scientifically, one emphasis was to better understand the split in isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages at the same sites. The paleomagnetic study seeks to establish paleolatitudes for Walvis Ridge sites for comparison with those published from hotspot seamount chains in the Pacific, in particular to test whether a component of true polar wander affects hotspot paleolatitude. Hole U1584A cored a 66.4 m thick sedimentary and volcaniclastic section with two lithostratigraphic units. Unit I is a 23 m thick sequence of bioturbated clay and nannofossil chalk with increasing volcaniclastic content downhole. Unit II is a >43 m thick sequence of lapillistone with basalt fragments. Because the seismic section crossing the site shows no evidence as to the depth of the volcaniclastic cover, coring was terminated early. Because there were no other shallow sites nearby with different characteristics on existing seismic lines, the unused operations time from Site U1584 was shifted to the next site. The seismic reflector interpreted as the top of igneous rock at Site U1585 once again resulted from volcaniclastic deposits. Hole U1585A coring began at 144.1 mbsf and penetrated a 273.5 m thick sedimentary and volcaniclastic section atop a 81.2 m thick series of massive basalt flows. The hole was terminated at 498.8 mbsf because allotted operational time expired. The sedimentary section contains four main lithostratigraphic units. Unit I (144.1–157.02 mbsf) is a bioturbated nannofossil chalk with foraminifera, similar to the shallowest sediments recovered at Site U1584. Unit II (157.02–249.20 mbsf), which is divided into two subunits, is a 92.2 m thick succession of massive and bedded pumice and scoria lapillistone with increased reworking, clast alteration, and tuffaceous chalk intercalations downhole. Unit III (249.20–397.76 mbsf) is 148.6 m thick and consists of a complex succession of pink to greenish gray tuffaceous chalk containing multiple thin, graded ash turbidites and tuffaceous ash layers; intercalated tuffaceous chalk slumps; and several thick coarse lapilli and block-dominated volcaniclastic layers. Befitting its complexity, this unit is divided into eight subunits (IIIA–IIIH). Three of these subunits (IIIA, IIID, and IIIG) are mainly basalt breccias. Unit IV (397.76–417.60 mbsf) is a volcanic breccia, 19.8 m thick, containing mostly juvenile volcaniclasts. The igneous section, Unit V (417.60–498.80 mbsf) is composed of a small number of massive basaltic lava flows. It is divided into three igneous lithologic units, with Unit 2 represented by a single 3 cm piece of quenched basalt with olivine phenocrysts in a microcrystalline groundmass. This piece may represent a poorly recovered set of pillow lavas. Unit 1 is sparsely to highly olivine-clinopyroxene ± plagioclase phyric massive basalt and is divided into Subunits 1a and 1b based on textural and mineralogical differences, which suggests that they are two different flows. Unit 3 also consists of two massive lava flows with no clear boundary features. Subunit 3a is a 10.3 m thick highly clinopyroxene-plagioclase phyric massive basalt flow with a fine-grained groundmass. Subunit 3b is a featureless massive basalt flow that is moderately to highly clinopyroxene-olivine-plagioclase phyric and >43.7 m thick. Alteration of the lava flows is patchy and moderate to low in grade, with two stages, one at a higher temperature and one at a low temperature, both focused around fractures. The Site U1585 chronological succession from basalt flows to pelagic sediment indicates volcanic construction and subsidence. Lava eruptions were followed by inundation and shallow-water volcaniclastic sediment deposition, which deepened over time to deepwater conditions. Although the massive flows were probably erupted in a short time and have little variability, volcaniclasts in the sediments may provide geochemical and geochronologic data from a range of time and sources. Chemical analyses indicate that Site U1585 basalt samples are mostly alkalic basalt, with a few trachybasalt flow and clast samples and one basaltic trachyandesite clast. Ti/V values lie mostly within the oceanic island basalt (OIB) field but overlap the mid-ocean-ridge basalt (MORB) field. Only a handful of clasts from Site U1584 were analyzed, but geochemical data are similar. Paleomagnetic data from Site U1585 indicate that the sediments and basalt units are strongly magnetic and mostly give coherent inclination data, which indicates that the basaltic section and ~133 m of overlying volcaniclastic sediment is reversely polarized and that this reversal is preserved in a core. Above this, the rest of the sediment section records two normal and two reversed zones. Although there are not enough basalt flows to give a reliable paleolatitude, it may be possible to attain such a result from the sediments. 
    more » « less
  2. International Ocean Discovery Program Expedition 397T sought to address the shortage of drilling time caused by COVID-19 mitigation during Expedition 391 (Walvis Ridge Hotspot) by drilling at two sites omitted from the earlier cruise. A week of coring time was added to a transit of JOIDES Resolution from Cape Town to Lisbon, which would cross Walvis Ridge on its way north. These two sites were located on two of the three seamount trails that emerge from the split in Walvis Ridge morphology into several seamount chains at 2°E. Site U1584 (proposed Site GT-6A) sampled the Gough track on the east, and Site U1585 (proposed Site TT-4A) sampled the Tristan track on the west. Together with Site U1578, drilled on the Center track during Expedition 391, they form a transect across the northern Walvis Ridge Guyot Province. The goal was to core seamount basalts and associated volcanic material for geochemical and isotopic, geochronologic, paleomagnetic, and volcanologic study. Scientifically, one emphasis was to better understand the split in geochemical and isotopic signatures that occurs at the morphologic split. Geochronology would add to the established age progression but also give another dimension to understanding Walvis Ridge seamount formation by giving multiple ages at the same sites. The paleomagnetic study seeks to establish paleolatitudes for Walvis Ridge sites for comparison with those published from hotspot seamount chains in the Pacific, in particular to test whether a component of true polar wander affects hotspot paleolatitude. Hole U1584A cored a 66.4 m thick sedimentary and volcaniclastic section with two lithostratigraphic units. Unit I is a 23 m thick sequence of bioturbated clay and nannofossil chalk with increasing volcaniclastic content downhole. Unit II is a >43 m thick sequence of lapillistone with basalt fragments. Because the seismic section crossing the site shows no evidence as to the depth of the volcaniclastic cover, coring was terminated early. Because there were no other shallow nearby sites with different character on existing seismic lines, the unused operations time from Site U1584 was shifted to the next site. The seismic reflector interpreted as the top of igneous rock at Site U1585 once again resulted from volcaniclastic deposits. Hole U1585A coring began at 144.1 mbsf and penetrated a 273.5 m thick sedimentary and volcaniclastic section atop a 81.2 m thick series of massive basalt flows. The hole was terminated at 498.8 mbsf because allotted operational time expired. The sedimentary section contains four main units. Unit I (144.1–157.02 mbsf) is a bioturbated nannofossil chalk with foraminifera, similar to the shallowest sediments recovered at Site U1584. Unit II (157.02–249.20 mbsf), which is divided into two subunits, is a 92.2 m thick succession of massive and bedded pumice and scoria lapillistone with increased reworking, clast alteration, and tuffaceous chalk intercalations downhole. Unit III (249.20–397.76 mbsf) is 148.6 m thick and consists of a complex succession of pink to greenish gray tuffaceous chalk containing multiple thin, graded ash turbidites and tuffaceous ash layers; intercalated tuffaceous chalk slumps; and several thick coarse lapilli and block-dominated volcaniclastic layers. Befitting the complexity, it is divided into eight subunits (IIIA–IIIH). Three of these subunits (IIIA, IIID, and IIIG) are mainly basalt breccias. Unit IV (397.76–417.60 mbsf) is a volcanic breccia, 19.8 m thick, containing mostly juvenile volcaniclasts. The igneous section, Unit V (417.60–498.80 mbsf) is composed of a small number of massive basaltic lava flows. It is divided into three lithologic units, with Unit 2 represented by a single 3 cm piece of quenched basalt with olivine phenocrysts in a microcrystalline groundmass. This piece may represent a poorly recovered set of pillow lavas. Unit 1 is sparsely to highly olivine-clinopyroxene ± plagioclase phyric massive basalt and is divided into Subunits 1a and 1b based on textural and mineralogical differences, which suggests that they are two different flows. Unit 3 also consists of two massive lava flows with no clear boundary features. Subunit 3a is a 10.3 m thick highly clinopyroxene-plagioclase phyric massive basalt flow with a fine-grained groundmass. Subunit 3b is a featureless massive basalt flow that is moderately to highly clinopyroxene-olivine-plagioclase phyric and >43.7 m thick. Alteration of the lava flows is patchy and moderate to low in grade, with two stages, one at a higher temperature and one at a low temperature, both focused around fractures. The Site U1585 chronologic succession from basalt flows to pelagic sediment indicates volcanic construction and subsidence. Lava eruptions were followed by inundation and shallow-water volcaniclastic sediment deposition, which deepened over time to deepwater conditions. Although the massive flows were probably erupted in a short time and have little variability, volcaniclasts in the sediments may provide geochemical and geochronologic data from a range of time and sources. Chemical analyses indicate that Site U1585 basalt samples are mostly alkalic basalt, with a few trachybasalt flow and clast samples and one basaltic trachyandesite clast. Ti/V ratios lie mostly within the oceanic island basalt (OIB) field but overlap the mid-ocean-ridge basalt (MORB) field. Only a handful of clasts from Site U1584 were analyzed, but geochemical data are similar. Paleomagnetic data from Site U1585 indicate that the sediments and basalt units are strongly magnetic and mostly give coherent inclination data, which indicates that the basaltic section and ~133 m of overlying volcaniclastic sediment is reversely polarized and that this reversal is preserved in a core. Above this, the rest of the sediment section records two normal and two reversed zones. Although there are not enough basalt flows to give a reliable paleolatitude, it may be possible to attain such a result from the sediments. 
    more » « less
  3. Constraining secular variation of the Earth’s magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth’s magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.

     
    more » « less
  4. Fires are an integral part of many terrestrial ecosystems and have a strong impact on soil properties. While reports of topsoil magnetic enhancement after fires vary widely, recent evidence suggests that plant ashes provide the most significant source of magnetic enhancement after burning. To investigate the magnetic properties of burnt plant material, samples of individual plant species from Iceland and Germany were cleaned and combusted at various temperatures prior to rock magnetic and geochemical characterization. Mass-normalized saturation magnetization values for burnt plant residues increase with the extent of burning in nearly all samples. However, when normalized to the loss on ignition, fewer than half of ash and charcoal samples display magnetic enhancement relative to intact plant material. Thus, while magnetic mineral concentrations generally increase, changes in the total amount of magnetic material are much more variable. Elemental analyses of Icelandic samples reveal that both total plant Fe and saturation magnetization are strongly correlated with Ti and Al, indicating that most of the Fe-bearing magnetic phases originate from inorganic material such as soil and atmospheric dust. Electron microscopy confirmed that inorganic particulate matter remains on most plant surfaces after cleaning. Plants with more textured leaf surfaces retain more dust, and ash from these samples tend to exhibit higher saturation magnetization and metal concentrations. Magnetic properties of plant ash therefore result from the thermal transformation of Fe in both organic compounds and inorganic particulate matter, which become concentrated on a mass basis when organic matter is combusted. These results indicate that the soil magnetic response to burning will vary among sites and regions as a function of 1) fire intensity, 2) the local composition of dust and soil particles on leaf surfaces, and 3) vegetation type and consequent differences in leaf morphologies. 
    more » « less
  5. Fly ash consists of mainly silt-size spherules that form during high-temperature coal combustion, such as in steam locomotives and coal-burning power plants. In the eastern USA, fly ash was distributed across the landscape atmospherically beginning in the late 19th century, peaking in the mid-20th century, and decreasing sharply with implementation of late 20th century particulate pollution controls. Although atmospheric deposition is limited today, fly ash particles continue to be resedimented into alluvial and lacustrine deposits from upland soil erosion and failure of fly ash storage ponds. Magnetic fly ash is easily extracted and identified microscopically, allowing for a simple and reproducible method for identifying post-1850 CE (Common Era) alluvium and lacustrine sediment. In the North Carolina Piedmont, magnetic fly ash was identified within the upper 50 cm at each of eight alluvial sites and one former milldam site. Extracted fly ash spherules have a magnetite or maghemite composition, with substitutions of Al, Si, Ca, and Ti, and range from 3–125 µm in diameter (mainly 10–45 µm). Based on the presence of fly ash, post-1850 alluvial deposits are 15–45 cm thick in central North Carolina river valleys (<0.5 km wide), ~60% thinner than in central Illinois valleys of similar width. Slower sedimentation rates in North Carolina watersheds are likely a result of a less agricultural land and less erodible (more clayey) soils. Artificial reservoirs (Lake Decatur, IL) and milldams (Betty’s Mill, NC), provide chronological tests for the fly ash method and high-resolution records of anthropogenic change. In cores of Lake Decatur sediments, changes in fly ash content appear related to decadal-scale variations in annual rainfall (and runoff), calcite precipitation, land-use changes, and/or lake history, superimposed on longer-term trends in particulate pollution. 
    more » « less