skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Depth‐Dependent Seismic Anisotropy in the Critical Zone Enhanced by Weathering of a Piedmont Schist
Abstract Weathering processes weaken and break apart rock, freeing nutrients and enhancing permeability through the subsurface. To better understand these processes, it is useful to constrain physical properties of materials derived from weathering within the critical zone. Foliated rocks exhibit permeability, strength and seismic anisotropy–the former two bear hydrological and geomorphological consequences while the latter is geophysically quantifiable. Each of these types of anisotropy are related to rock fabric (fractures and foliation); thus, characterizing weathering‐dependent changes in rock fabric with depth may have a range of implications (e.g., landslide susceptibility, groundwater modeling, and landscape evolution). To better understand how weathering effects rock fabric, we quantify seismic anisotropy in saprolite and weathered bedrock within two catchments underlain by the Precambrian Loch Raven schist, located in Oregon Ridge Park, MD. Using circular geophone arrays and perpendicular seismic refraction profiles, anisotropy versus depth functions are created for material 0–25 m below ground surface (bgs). We find that anisotropy is relatively low (0%–15%) in the deepest material sampled (12–25 m bgs) but becomes more pronounced (29%–33%) at depths corresponding with saprolite and highly weathered bedrock (5–12 m bgs). At shallow soil depths (0–5 m bgs), material is seismically isotropic, indicating that mixing processes have destroyed parent fabric. Therefore, in situ weathering and anisotropy appear to be correlated, suggesting that in‐place weathering amplifies the intrinsic anisotropy of bedrock.  more » « less
Award ID(s):
1945431 2012073 1654194 2012353 2012316
PAR ID:
10360063
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
126
Issue:
10
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Within Earth's critical zone, weathering processes influence landscape evolution and hillslope hydrology by creating porosity in bedrock, transforming it into saprolite and eventually soil. In situ weathering processes drive much of this transformation while preserving the rock fabric of the parent material. Inherited rock fabric in regolith makes the critical zone anisotropic, affecting its mechanical and hydrological properties. Therefore, quantifying and studying anisotropy is an important part of characterising the critical zone, yet doing so remains challenging. Seismic methods can be used to detect rock fabric and infer mechanical and hydrologic conductivity anisotropy across landscapes. We present a novel way of measuring seismic anisotropy in the critical zone using Rayleigh and Love surface waves. This method leverages multi‐component surface seismic data to create a high‐resolution model of seismic anisotropy, which we compare with a nuclear magnetic resonance log measured in a nearby borehole. The two geophysical data sets show that seismic anisotropy and porosity develop at similar depths in weathered bedrock and both reach their maximum values in saprolite, implying that in situ weathering enhances anisotropy while concurrently generating porosity in the critical zone. We bolster our findings with in situ measurements of seismic and hydrologic conductivity anisotropy made in a 3 m deep soil excavation. Our study offers a fresh perspective on the importance of rock fabric in the development and function of the critical zone and sheds new insights into how weathering processes operate. 
    more » « less
  2. Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions. 
    more » « less
  3. Abstract Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment. 
    more » « less
  4. Abstract Shallow bedrock strength controls both landslide hazard and the rate and form of erosion, yet regional patterns in near‐surface mechanical properties are rarely known quantitatively due to the challenge in collectingin situmeasurements. Here we present seismic and geomechanical characterizations of the shallow subsurface across the central Himalayan Range in Nepal. By pairing widely distributed 1D shear wave velocity surveys and engineering outcrop descriptions per the Geological Strength Index classification system, we evaluate landscape‐scale patterns in near‐surface mechanical characteristics and their relation to environmental factors known to affect rock strength. We find that shallow bedrock strength is more dependent on the degree of chemical and physical weathering, rather than the mineral and textural differences between the metamorphic lithologies found in the central Himalaya. Furthermore, weathering varies systematically with topography. Bedrock ridge top sites are highly weathered and have S‐wave seismic velocities and shear strength characteristics that are more typical of soils, whereas sites near valley bottoms tend to be less weathered and characterized by high S‐wave velocities and shear strength estimates typical of rock. Weathering on hillslopes is significantly more variable, resulting in S‐wave velocities that range between the ridge and channel endmembers. We speculate that variability in the hillslope environment may be partly explained by the episodic nature of mass wasting, which clears away weathered material where landslide scars are recent. These results underscore the mechanical heterogeneity in the shallow subsurface and highlight the need to account for variable bedrock weathering when estimating strength parameters for regional landslide hazard analysis. 
    more » « less
  5. null (Ed.)
    Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering. 
    more » « less