Abstract Confinement of topological excitations into particle-like states - typically associated with theories of elementary particles - are known to occur in condensed matter systems, arising as domain-wall confinement in quantum spin chains. However, investigation of confinement in the condensed matter setting has rarely ventured beyond lattice spin systems. Here we analyze the confinement of sine-Gordon solitons into mesonic bound states in a perturbed quantum sine-Gordon model. The latter describes the scaling limit of a one-dimensional, quantum electronic circuit (QEC) array, constructed using experimentally-demonstrated QEC elements. The scaling limit is reached faster for the QEC array compared to spin chains, allowing investigation of the strong-coupling regime of this model. We compute the string tension of confinement of sine-Gordon solitons and the changes in the low-lying energy spectrum. These results, obtained using the density matrix renormalization group method, could be verified in a quench experiment using state-of-the-art QEC technologies.
more »
« less
Universality and quantum criticality in quasiperiodic spin chains
Abstract Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.
more »
« less
- Award ID(s):
- 1653271
- PAR ID:
- 10226487
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Disorder free many-body localization (MBL) can occur in interacting systems that can dynamically generate their own disorder. We address the thermal-MBL phase transition of two isotropic Heisenberg spin chains that are quasiperiodically coupled to each other. The spin chains are incommensurate and are coupled through a short-range exchange interaction of the type that decays exponentially with the distance. Using exact diagonalization, matrix product states, and a density matrix renormalization group, we calculate the time evolution of the entanglement entropy at long times and extract the inverse participation ratio in the thermodynamic limit. We show that this system has a robust MBL phase. We establish the phase diagram with the onset of MBL as a function of the interchain exchange coupling and of the incommensuration between the spin chains. The Ising limit of the interchain interaction optimizes the stability of the MBL phase over a broad range of incommensurations above a given critical exchange coupling. Incorporation of interchain spin flips significantly enhances entanglement between the spin chains and produces delocalization, favoring a prethermal phase whose entanglement entropy grows logarithmically with time. Published by the American Physical Society2024more » « less
-
We study one-dimensional hybrid quantum circuits perturbed by quenched quasiperiodic (QP) modulations across the measurement-induced phase transition (MIPT). Considering non-Pisot QP structures, characterized by unbounded fluctuations, allows us to tune the wandering exponent β to exceed the Luck bound ν ≥ 1/(1−β) for the stability of the MIPT, where ν = 1.28(2). Via robust numerical simulations of random Clifford circuits interleaved with local projective measurements, we find that sufficiently large QP structural fluctuations destabilize the MIPT and induce a flow to a broad family of critical dynamical phase transitions of the infinite QP type that is governed by the wandering exponent β. We numerically determine the associated critical properties, including the correlation length exponent consistent with saturating the Luck bound, and a universal activated dynamical scaling with activation exponent ψ ≅ β, finding excellent agreement with the conclusions of real-space renormalization group calculations.more » « less
-
Dimerized valence bond solids appear naturally in spin-1/2 systems on bipartite lattices, with the geometric frustrations playing a key role both in their stability and the eventual `melting' due to quantum fluctuations. Here, we ask the question of the stability of such dimerized solids in spin-1 systems, taking the anisotropic square lattice with bilinear and biquadratic spin-spin interactions as a paradigmatic model. The lattice can be viewed as a set of coupled spin-1 chains, which in the limit of vanishing inter-chain coupling are known to possess a stable dimer phase. We study this model using the density matrix renormalization group (DMRG) and infinite projected entangled-pair states (iPEPS) techniques, supplemented by the analytical mean-field and linear flavor wave theory calculations. While the latter predicts the dimer phase to remain stable up to a reasonably large interchain-to-intrachain coupling ratio r≲0.6, the DMRG and iPEPS find that the dimer solid melts for much weaker interchain coupling not exceeding r≲0.15. We find the transition into a magnetically ordered state to be first order, manifested by a hysteresis and order parameter jump, precluding the deconfined quantum critical scenario. The apparent lack of stability of dimerized phases in 2D spin-1 systems is indicative of strong quantum fluctuations that melt the dimer solid.more » « less
-
A bstract We study the renormalization group of generic effective field theories that include gravity. We follow the on-shell amplitude approach, which provides a simple and efficient method to extract anomalous dimensions avoiding complications from gauge redundancies. As an invaluable tool we introduce a modified helicity $$ \tilde{h} $$ h ˜ under which gravitons carry one unit instead of two. With this modified helicity we easily explain old and uncover new non-renormalization theorems for theories including gravitons. We provide complete results for the one-loop gravitational renormalization of a generic minimally coupled gauge theory with scalars and fermions and all orders in M Pl , as well as for the renormalization of dimension-six operators including at least one graviton, all up to four external particles.more » « less
An official website of the United States government
