skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soliton confinement in a quantum circuit
Abstract Confinement of topological excitations into particle-like states - typically associated with theories of elementary particles - are known to occur in condensed matter systems, arising as domain-wall confinement in quantum spin chains. However, investigation of confinement in the condensed matter setting has rarely ventured beyond lattice spin systems. Here we analyze the confinement of sine-Gordon solitons into mesonic bound states in a perturbed quantum sine-Gordon model. The latter describes the scaling limit of a one-dimensional, quantum electronic circuit (QEC) array, constructed using experimentally-demonstrated QEC elements. The scaling limit is reached faster for the QEC array compared to spin chains, allowing investigation of the strong-coupling regime of this model. We compute the string tension of confinement of sine-Gordon solitons and the changes in the low-lying energy spectrum. These results, obtained using the density matrix renormalization group method, could be verified in a quench experiment using state-of-the-art QEC technologies.  more » « less
Award ID(s):
2210187
PAR ID:
10474348
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8urad/s/rt.Hz for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications. 
    more » « less
  2. Ringwald, Andreas (Ed.)
    We compute the renormalized one-loop quantum corrections to the energy density T00(x) and pressure T11(x) for solitons in the 1+1 dimensional scalar sine-Gordon and kink models. We show how precise implementation of counterterms in dimensional regularization resolves previously identified discrepancies between the integral of T00(x) and the known correction to the total energy. 
    more » « less
  3. Abstract Arising in many branches of physics, Hopf solitons are three-dimensional particle-like field distortions with nontrivial topology described by the Hopf map. Despite their recent discovery in colloids and liquid crystals, the requirement of applied fields or confinement for stability impedes their utility in technological applications. Here we demonstrate stable Hopf solitons in a liquid crystal material without these requirements as a result of enhanced stability by tuning anisotropy of parameters that describe energetic costs of different gradient components in the molecular alignment field. Nevertheless, electric fields allow for inter-transformation of Hopf solitons between different geometric embodiments, as well as for their three-dimensional hopping-like dynamics in response to electric pulses. Numerical modelling reproduces both the equilibrium structure and topology-preserving out-of-equilibrium evolution of the soliton during switching and motions. Our findings may enable myriads of solitonic condensed matter phases and active matter systems, as well as their technological applications. 
    more » « less
  4. Abstract Flat bands in condensed matter systems can host emergent states of matter, from insulating states in twisted bilayer graphene to fractionalized excitations in frustrated magnets and quantum Hall materials. A key phenomenon in certain flat-band systems is Aharonov–Bohm caging, where particles become localized due to destructive interference caused by gauge fields. Here we report on the experimental realization of highly tunable flat-band models populated by strongly interacting Rydberg atoms. By employing synthetic dimensions, we engineer a flat-band rhombic lattice with twisted boundaries and explore the control of Aharonov–Bohm caging during non-equilibrium dynamics through a tunable gauge field. Microscopic measurements of Rydberg pairs reveal the interaction-driven breakdown of Aharonov–Bohm caging in the limit of strong dipolar interactions, where lattice bands mix. In the limit of weak interactions, where caging persists, we observe effective magnetism arising from the interaction-driven mixing of degenerate flat-band states. These observations offer insights into emergent phenomena in synthetic quantum materials and expand our understanding of quantum many-body physics in engineered lattice systems. 
    more » « less
  5. Abstract Trapped-ion quantum simulators, in analog and digital modes, are considered a primary candidate to achieve quantum advantage in quantum simulation and quantum computation. The underlying controlled ion–laser interactions induce all-to-all two-spin interactions via the collective modes of motion through Cirac–Zoller or Mølmer–Sørensen schemes, leading to effective two-spin Hamiltonians, as well as two-qubit entangling gates. In this work, the Mølmer–Sørensen scheme is extended to induce three-spin interactions via tailored first- and second-order spin–motion couplings. The scheme enables engineering single-, two-, and three-spin interactions, and can be tuned via an enhanced protocol to simulate purely three-spin dynamics. Analytical results for the effective evolution are presented, along with detailed numerical simulations of the full dynamics to support the accuracy and feasibility of the proposed scheme for near-term applications. With a focus on quantum simulation, the advantage of a direct analog implementation of three-spin dynamics is demonstrated via the example of matter-gauge interactions in the U(1) lattice gauge theory within the quantum link model. The mapping of degrees of freedom and strategies for scaling the three-spin scheme to larger systems, are detailed, along with a discussion of the expected outcome of the simulation of the quantum link model given realistic fidelities in the upcoming experiments. The applications of the three-spin scheme go beyond the lattice gauge theory example studied here and include studies of static and dynamical phase diagrams of strongly interacting condensed-matter systems modeled by two- and three-spin Hamiltonians. 
    more » « less