skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Continuous-Time Inventory-Routing Problem
We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer's storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that these components are sufficient to produce provably high-quality, often optimal, solutions.  more » « less
Award ID(s):
1662848
PAR ID:
10226534
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transportation Science
Volume:
54
Issue:
2
ISSN:
0041-1655
Page Range / eLocation ID:
375-399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pang, J. (Ed.)
    Rationally designed molecular circuits describable by well-mixed chemical reaction kinetics can realize arbitrary Boolean function computation yet differ significantly from their electronic counterparts. The design, preparation, and purification of new molecular components poses significant barriers. Consequently, it is desirable to synthesize circuits from an existing “fridge” inventory of distinguishable parts, while satisfying constraints such as component compatibility. Heuristic synthesis techniques intended for large electronic circuits often result in non-optimal molecular circuits, invalid circuits that violate domain-specific constraints, or circuits that cannot be built with the current inventory. Existing “exact” synthesis techniques are able to find minimal feedforward Boolean circuits with complex constraints, but do not map to distinguishable inventory components. We present the Fridge Compiler, an SMT-based approach to find optimal Boolean circuits within a given molecular inventory. Empirical results demonstrate the Fridge Compiler’s versatility in synthesizing arbitrary Boolean functions using three different molecular architectures, while satisfying user-specified constraints. We showcase the successful synthesis of all 256 three-bit and 65,536 four-bit predicate functions using a large custom inventory, with worst-case completion times of only seconds on a modern laptop. In addition, we introduce a unique class of cyclic molecular circuits that cover a larger number of Boolean functions than their conventional counterparts over a common inventory, often with significantly smaller implementations. Importantly, and absent in previous approaches specific to molecular circuits, the Fridge Compiler is logically sound, complete, and optimal for the user-specified cost function and component inventory. 
    more » « less
  2. This full paper presents the Collaborative Active Learning and Inclusiveness (CALI) inventory, and an analytical model using the CALI inventory, demographic data, mindset surveys, and knowledge mastery assessment, to explore relationships between classroom climate and student experiences. The CALI inventory enables the investigation of the impact of the student experience in an active learning classroom by distinguishing the factors that characterize the structure, social learning, and inclusive practices. The Structure Index includes components related to course setup, organization, assessment, grading, and communications. The Sociality Index includes components related to opportunities for students to interact with each other. The Inclusiveness Index includes components related to how the instructor communicates a sense of belonging to the students through a growth mindset and inclusive policies and practices. A CS Mindset Instrument was developed based on research that measured students' self-efficacy by evaluating the extent of variation in their self-perceived ability to accomplish a task, sense of belonging in computing, and professional identity development. Demographic data is collected that allows for an analysis using an intersectional lens to acknowledge the complexity of social and cultural contexts. The knowledge and mastery assessments capture changes in competency through pre-post mastery quizzes. The combination of CALI with other instruments, including those that characterize student mindset, identity, and levels of mastery, enables investigation of how various practices of inclusive and collaborative active learning have differential effects on students with different identities in computer science. 
    more » « less
  3. Prior research on inventory control has been wide ranging, yet the environmental implications of an (s,S) inventory policy remain uninvestigated. This paper seeks to bridge the gap by characterising a firm’s voluntary environmental policy in the setup of an (s,S) inventory control policy. We suggest a mixed model structure wherein, due to the presence of fixed production costs, the inventory is determined continuously by sales and impulsively with ordering decisions obeying an optimal stopping process, while the uncertain sales process is controlled by continuous-time environmental goodwill-related decisions. We show that a firm should successively use voluntary environmental efforts to stimulate its sales when there is inventory and to increase backlogging to improve its production efficiency. Given the recurrent pattern of this policy, we conclude that voluntary environmental efforts under an (s,S) inventory control is not compatible with using these efforts as a means to generate ephemeral reputation insurance. 
    more » « less
  4. The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across the United States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex, as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g., the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides insights into the consequences of choosing an inappropriate inventory policy when disruptions take place. 
    more » « less
  5. In an effort to improve the quality of citizen engagement in workplace, politics, and other domains in which quantitative reasoning plays an important role, Quantitative Literacy (QL) has become the focus of considerable research and development efforts in mathematics education. QL is characterized by sophisticated reasoning with elementary mathematics. In this project, we extend the notions of QL to include the physics domain and call it Physics Quantitative Literacy (PQL). We report on early stage development from a collaboration that focuses on reasoning inventory design and data analysis methodology for measuring the development of PQL across the introductory physics sequence. We have piloted a prototype assessment designed to measure students' PQL in introductory physics: Physics Inventory of Quantitative Literacy (PIQL). This prototype PIQL focuses on two components of PQL: proportional reasoning, and reasoning with signed quantities. We present preliminary results from approximately 1,000 undergraduate and 20 graduate students. 
    more » « less