skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimization of Drug Shortages in Pharmaceutical Supply Chains: A Simulation-Based Analysis of Drug Recall Patterns and Inventory Policies
The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across the United States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex, as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g., the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides insights into the consequences of choosing an inappropriate inventory policy when disruptions take place.  more » « less
Award ID(s):
1638302
PAR ID:
10128720
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Complexity
Volume:
2018
ISSN:
1076-2787
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reverse logistics has been gaining recognition in practice (and theory) for helping companies better match supply with demand, and thus reduce costs in their supply chains. In this paper, we study reverse logistics from the perspective of a supply chain in which each location can initiate multiple flows of product. Our first objective is to jointly optimize ordering decisions pertaining to regular, reverse and expedited flows of product in a stochastic, multi-stage inventory model of a logistics supply chain, in which the physical transformation of the product is completed at the most upstream location in the system. Due to those multiple flows of product, the feasible region for the problem acquires multi-dimensional boundaries that lead to the curse of dimensionality. To address this challenge, we develop a different solution method that allows us to reduce the dimensionality of the feasible region and, subsequently, identify the structure of the optimal policy. We refer to this policy as a nested echelon base-stock policy, as decisions for different product flows are sequentially nested within each other. We show that this policy renders the model analytically and numerically tractable. Our results provide actionable policies for firms to jointly manage three different product flows in their supply chains, and allow us arrive at insights regarding the main drivers of the value of reverse logistics. One of our key findings is that, when it comes to the value generated by reverse logistics, demand variability (i.e., demand uncertainty across periods) matters more than demand volatility (i.e., demand uncertainty within each period). This is because, in the absence of demand variability, it is effectively never optimal to return product upstream, regardless of the level of inherent demand volatility. Our second objective is to extend our analysis to product transforming-supply chains, in which product transformation is allowed to occur at each location. In such a system, it becomes necessary to keep track of both the location and stage of completion of each unit of inventory, so that the number of state and decisions variables increases with the square of the number of locations in the system. To analyze such a supply chain, we first identify a policy that provides a lower bound on the total cost. Then, we establish a special decomposition of the objective cost function that allows us to propose a novel heuristic policy. We find that the performance gap of our heuristic policy relative to the lower-bounding policy averages less than 5% across a range of parameters and supply chain lengths. 
    more » « less
  2. The food and agriculture industries are critical to the U.S. economy, ensuring the daily food supply while facing significant challenges. These issues include ethical concerns related to labor exploitation and the need to improve resilience against disruptions. Addressing these issues offers an opportunity to create supply chains that are both more ethical and more resilient. This dissertation focuses on two interconnected aspects of agricultural supply chains. The first examines strategies for disrupting exploitative labor practices and ensuring better protection for farm workers. The second explores methods to enhance the resilience of ethical supply chains against various disruptions, including natural disasters and labor shortages. Together, these aspects aim to contribute to the development of agricultural supply chains that are both ethically sound and resilient to disruptions. Although farm workers play an essential role in the success of these industries, they are vulnerable to labor exploitation and trafficking. Labor violations affecting these workers often go undetected due to limited government resources for inspection. Furthermore, many farm workers face barriers to disclosing their poor working conditions due to their immigration status and mistrust of law enforcement, making them even more susceptible to exploitation. To address this issue, we conducted research to provide strategies for government agencies involved in the H-2A visa program and the screening of H-2A employers to prioritize workplaces for inspection. In the first study, we employed multilevel zero-inflated negative binomial regression analysis to extract patterns and identify factors correlated with detecting H-2A labor violations. We provide suggestions for improving inspection strategies based on our research results. This involved identifying high-risk locations and labor-intensive worksites with a greater likelihood of labor violations and emphasizing the importance of allocating sufficient task force funding and resources to prioritize inspections in these areas. Labor trafficking networks in U.S. agricultural supply chains exploit vulnerable workers, including migrants and unauthorized laborers, while evading detection through complex structures, making them difficult to disrupt. In the second study, we developed a comprehensive labor trafficking network model that maps the intricate connections and operations of these networks. Using a bi-level integer programming approach, we optimized intervention strategies to disrupt trafficking operations, balancing resource constraints with the need for maximum impact. By employing K-means clustering, we classified interventions based on their effectiveness, providing clear, data-driven guidance for anti-trafficking agencies to prioritize efforts and allocate resources efficiently. This approach offers a powerful tool for enhancing detection and improving the overall effectiveness of anti-trafficking initiatives in limited resource environments. The importance of food and agricultural supply chains in our daily lives cannot be emphasized enough. While the prior two studies sought to disrupt exploitative work conditions in agricultural supply chains, this dissertation also seeks to help supply chains that are operating ethically do so in an effective manner. Any disruption in these chains can lead to severe consequences, from food shortages to economic instability. Therefore, it is critical to develop effective strategies to mitigate the impact of disruptions in these non-exploitative supply chains. In the third study, we developed a scenario-based two-stage stochastic model to mitigate the impact of multiple disruptions in agricultural supply chains. This approach enables a detailed evaluation of strategies such as multi-sourcing and the use of backup facilities to reduce disruption impacts. The model incorporates flexibility to handle both partial and full facility disruptions, while accounting for disruptions affecting both primary and backup facilities to provide a comprehensive analysis of supply chain vulnerability and recovery. By employing a multi-period time horizon, the model evaluates supply chain performance over time, considering random disruption start times and the possibility of simultaneous disruptions across multiple echelons with varying severity. The analysis highlights the challenges posed by multiple sources of uncertainty in supply chain decision-making and emphasizes the need for further research to develop actionable strategies for improving resilience in agricultural supply chains. 
    more » « less
  3. B. Feng, G. Pedrielli (Ed.)
    Increased demand for medical supplies, and specifically respirators and face masks, during the Covid-19 pandemic along with the inability of legitimate suppliers to meet these needs created a window of opportunity for counterfeiters to capitalize on the supply chain disruptions caused by a global health crisis. Both legitimate and illicit businesses began shifting their scope from sectors such as textiles to producing and distributing personal protective equipment (PPE), many of which were counterfeit or unauthentic products and thus unable to properly protect users. To study cost-effective disruption strategies, this study proposes a simulation-optimization framework. The framework is used to model counterfeiters’ behavior and analyze the effectiveness of different disruption strategies for counterfeit PPE supply chains during the Covid-19 pandemic. 
    more » « less
  4. This study examines the resilience and sustainability of supply chains amid global disruptions, with a particular focus on the essential role of reverse logistics. Through a game-theoretic approach, we explore manufacturer decisions to source from either reliable but expensive raw materials or cost-effective yet riskier recycled or recyclable materials from the reverse logistics channel. Our analysis outlines three primary sourcing strategies: sourcing exclusively from suppliers (SS), sourcing solely through retailer reverse channel (RS), and a balanced dual sourcing (DS) approach. Our findings reveal the economic viability that recycling outsourcing is influenced by market demand and disruption risks. Notably, in scenarios of constrained market potential, the cost advantage of using recycled materials from less reliable reverse logistics channels surpasses the risks associated with supply chain disruptions, suggesting a complex cost-benefit landscape amidst supply uncertainties. Moreover, the stability of suppliers emerges as a pivotal factor in strategic sourcing decisions, underscoring the need to consider both economic efficiencies and supply reliability. The study also evaluates the dynamic competition between manufacturers and retailers, shedding light on how strategic adjustments driven by sustainability and resilience goals can enhance profitability and sustainability. It was found that despite the threat of disruptions, manufacturers benefit more from engaging with risky reverse channels under specific conditions, underscoring the nuanced decision-making required in uncertain supply scenarios. This research advances sustainable supply chain management by highlighting strategic complexities and the need for understanding economic efficiencies and supply stability, offering insights for navigating disruptions and fostering resilient, sustainable supply chains. 
    more » « less
  5. null (Ed.)
    Sleep has been shown to be an indispensable and important component of patients' recovery process. Nonetheless, the sleep quality of patients in the Intensive Care Unit (ICU) is often low, due to factors such as noise, pain, and frequent nursing care activities. Frequent sleep disruptions by the medical staff and/or visitors at certain times might lead to disruption of the patient's sleep-wake cycle and can also impact the severity of pain. Examining the association between sleep quality and frequent visitation has been difficult, due to the lack of automated methods for visitation detection. In this study, we recruited 38 patients to automatically assess visitation frequency from captured video frames. We used the DensePose R-CNN (ResNet-101) model to calculate the number of people in the room in a video frame. We examined when patients are interrupted the most, and we examined the association between frequent disruptions and patient outcomes on pain and length of stay. 
    more » « less