Abstract This is the first report of molybdenum carbide‐based electrocatalyst for sulfur‐based sodium‐metal batteries. MoC/Mo2C is in situ grown on nitrogen‐doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide–porous carbon nanotubes host (MoC/Mo2C@PCNT–S). Quasi‐solid‐state phase transformation to Na2S is promoted in carbonate electrolyte, with in situ time‐resolved Raman, X‐ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2C@PCNT–S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g−1at 1 A g−1, 818 mAh g−1at 3 A g−1, and 621 mAh g−1at 5 A g−1. The cells deliver superior cycling stability, retaining 650 mAh g−1after 1000 cycles at 1.5 A g−1, corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm−2) also show cycling stability. Density functional theory demonstrates that formation energy of Na2Sx(1 ≤x ≤ 4) on surface of MoC/Mo2C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2Sx(1 ≤x ≤ 4) on MoC/Mo2C surfaces results from charge transfer between the sulfur and Mo sites on carbides’ surface.
more »
« less
Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes
Versatile chemical transformations of surface functional groups in two-dimensional transition-metal carbides (MXenes) open up a previously unexplored design space for this broad class of functional materials. We introduce a general strategy to install and remove surface groups by performing substitution and elimination reactions in molten inorganic salts. Successful synthesis of MXenes with oxygen, imido, sulfur, chlorine, selenium, bromine, and tellurium surface terminations, as well as bare MXenes (no surface termination), was demonstrated. These MXenes show distinctive structural and electronic properties. For example, the surface groups control interatomic distances in the MXene lattice, and Tin+1Cn(n= 1, 2) MXenes terminated with telluride (Te2−) ligands show a giant (>18%) in-plane lattice expansion compared with the unstrained titanium carbide lattice. The surface groups also control superconductivity of niobium carbide MXenes.
more »
« less
- PAR ID:
- 10226642
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 369
- Issue:
- 6506
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 979-983
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MXenes are promising passive components that enable lithium‐sulfur batteries (LSBs) by effectively trapping lithium polysulfides (LiPSs) and facilitating surface‐mediated redox reactions. Despite numerous studies highlighting the potential of MXenes in LSBs, there are no systematic studies of MXenes’ composition influence on polysulfide adsorption, which is foundational to their applications in LSB. Here, a comprehensive investigation of LiPS adsorption on seven MXenes with varying chemistries (Ti2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, V2CTx, Nb2CTx, and Nb4C3Tx), utilizing optical and analytical spectroscopic methods is performed. This work reports on the influence of polysulfide concentration, interaction time, and MXenes’ chemistry (transition metal layer, carbide and carbonitride inner layer, surface terminations and structure) on the amount of adsorbed LiPSs and the adsorption mechanism. These findings reveal the formation of insoluble thiosulfate and polythionate complex species on the surfaces of all tested MXenes. Furthermore, the selective adsorption of lithium and sulfur, and the extent of conversion of the adsorbed species on MXenes varied based on their chemistry. For instance, Ti2CTxexhibits a strong tendency to adsorb lithium ions, while Mo2TiC2Txis effective in trapping sulfur by forming long‐chain polythionates. The latter demonstrates a significant conversion of intermediate polysulfides into low‐order species. This study offers valuable guidance for the informed selection of MXenes in various functional components benefiting the future development of high‐performance LSBs.more » « less
-
Abstract The one‐step syntheses, X‐ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fen(μn‐C)(CO)m]x(n=5,6;m=15,16;x=0,−2) with electrophilic sulfur sources (S2Cl2, S8) results in the formation of several μ4‐S dimers of clusters, and moreover, iron‐sulfide‐(sulfocarbide) clusters. The core sulfocarbide unit {C−S}4−serves as a structural model for a proposed intermediate in the radicalS‐adenosyl‐L‐methionine biogenesis of the M‐cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato‐iron‐carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe5(μ5‐C)(SC7H7)(CO)13]−. The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron‐sulfur‐carbide clusters like FeMoco.more » « less
-
Abstract 2D early transition metal carbide and nitride MXenes have intriguing properties for electrochemical energy storage and electrocatalysis. These properties can be manipulated by modifying the basal plane chemistry. Here, mixed transition metal nitride MXenes, M‐Ti4N3Tx(M = V, Cr, Mo, or Mn; Tx= O and/or OH), are developed by modifying pristine exfoliated Ti4N3TxMXene with V, Cr, Mo, and Mn salts using a simple solution‐based method. The resulting mixed transition metal nitride MXenes contain 6–51% metal loading (cf. Ti) that exhibit rich electrochemistry including highly tunable hydrogen evolution reaction (HER) electrocatalytic activity in a 0.5mH2SO4electrolyte as follows: V‐Ti4N3Tx> Cr‐Ti4N3Tx> Mo‐Ti4N3Tx> Mn‐Ti4N3Tx> pristine Ti4N3Txwith overpotentials as low as 330 mV at −10 mA cm−2with a charge‐transfer resistance of 70 Ω. Scanning electrochemical microscopy (SECM) reveals the electrochemical activity of individual MXene flakes. The SECM data corroborate the bulk HER activity trend for M‐Ti4N3Txas well as provide the first experimental evidence that HER results from catalysis on the MXene basal plane. These electrocatalytic results demonstrate a new pathway to tune the electrochemical properties of MXenes for water splitting and related electrochemical applications.more » « less
-
Abstract Surface chemistry and core composition of 2D MXenes play a major role in their interfacial properties, but the determination and quantification of their bonding environments remain challenging. X‐ray Photoelectron Spectroscopy (XPS) is a method of choice that is broadly utilized but is often hindered by large uncertainties and systematic bias due to adsorbed species such as adventitious carbon or etching residues. In this work, energy‐dependent XPS and depth profile modeling of the Ti3C2TxMXene surface are employed to differentiate the contributions from the MXene and the adsorbed species, thereby increasing the accuracy of quantification. In comparison, uncorrected lab‐based XPS suffers from a systematic overestimation of Ti vacancies by 7% and an underestimation of terminal atoms, particularly F, by as much as 15%. Interestingly, it is found that a simple inelastic mean free path correction is sufficient to address the issue and reveals extremely low defects in Ti3C2TxMXene synthesized using the HF/HCl etching route. Soft X‐ray Absorption Spectroscopy (XAS), supported by Density Functional Theory (DFT) calculations, also demonstrates a high chemical sensitivity of the surface terminations. This work provides novel insights into XPS quantification and the use of XAS for probing the carbide core and surface chemistry of Ti3C2TxMXenes.more » « less
An official website of the United States government
