skip to main content

Title: Modeling human activity dynamics: an object-class oriented space–time composite model based on social media and urban infrastructure data
Abstract

Modeling human activity dynamics is important for many application domains. However, there are problems inherent in modeling population information, since the number of people inside a given area can change dynamically over time. Here, a cyberGIS-enabled spatiotemporal population model is developed by combining Twitter data with urban infrastructure registry data to estimate human activity dynamics. This model is an object-class oriented space–time composite model, in which real-world phenomena are modeled as spatiotemporal objects, and people can move from one object to another over time. In this research, all spatiotemporal objects are aggregated into 14 spatiotemporal object classes, and all objects in a given space at different times can be projected down to a spatial plane to generate a common spatiotemporal map. A temporal weight matrix is derived from Twitter activity curves for each spatiotemporal object class and represents population dynamics for each object class at different hours of a day. Finally, model performance is evaluated by using a comparison to registered census data. This spatiotemporal human activity dynamics model was developed in a cyberGIS computing environment, which enables computational and data intensive problem solving. The results of this research can be used to support spatial decision-making in various application more » areas such as disaster management where population dynamics plays an important role.

« less
Authors:
; ; ; ;
Publication Date:
NSF-PAR ID:
10226662
Journal Name:
Computational Urban Science
Volume:
1
Issue:
1
ISSN:
2730-6852
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems withmore »spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems.

    Results

    In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates of extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models.

    Conclusion

    We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.

    « less
  2. This paper introduces a spatiotemporal analysis framework for estimating hourly changing population distribution patterns in urban areas using geo-tagged tweets (the messages containing users’ geospatial locations), land use data, and dasymetric maps. We collected geo-tagged social media (tweets) within the County of San Diego during one year (2015) by using Twitter’s Streaming Application Programming Interfaces (APIs). A semi-manual Twitter content verification procedure for data cleaning was applied first to separate tweets created by humans from non-human users (bots). The next step was to calculate the number of unique Twitter users every hour within census blocks. The final step was tomore »estimate the actual population by transforming the numbers of unique Twitter users in each census block into estimated population densities with spatial and temporal factors using dasymetric maps. The temporal factor was estimated based on hourly changes of Twitter messages within San Diego County, CA. The spatial factor was estimated by using the dasymetric method with land use maps and 2010 census data. Comparing to census data, our methods can provide better estimated population in airports, shopping malls, sports stadiums, zoo and parks, and business areas during the day time.« less
  3. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, andmore »it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper.« less
  4. 3D scene representation for robot manipulation should capture three key object properties: permanency - objects that become occluded over time continue to exist; amodal completeness - objects have 3D occupancy, even if only partial observations are available; spatiotemporal continuity - the movement of each object is continuous over space and time. In this paper, we introduce 3D Dynamic Scene Representation (DSR), a 3D volumetric scene representation that simultaneously discovers, tracks, reconstructs objects, and predicts their dynamics while capturing all three properties. We further propose DSR-Net, which learns to aggregate visual observations over multiple interactions to gradually build and refine DSR.more »Our model achieves state-of-the-art performance in modeling 3D scene dynamics with DSR on both simulated and real data. Combined with model predictive control, DSR-Net enables accurate planning in downstream robotic manipulation tasks such as planar pushing. Code and data are available at dsr-net.cs.columbia.edu.« less
  5. The 2030 Global Sustainable Development Agenda of United Nations highlighted the critical importance of understanding the integrated nature between enhancing infrastructure resilience and facilitating social equity. Social equity is defined as equal opportunities provided to different people by infrastructure. It addresses disparities and unequal distribution of goods, services, and amenities. Infrastructure resilience is defined as the ability of infrastructure to withstand, adapt, and quickly recover from disasters. Existing research shows that infrastructure resilience and social equity are closely related to each other. However, there is a lack of research that explicitly understands the complex relationships between infrastructure resilience and socialmore »equity. To address this gap, this study aims to examine such interrelationships using social media data. Social media data is increasingly being used by researchers and proven to be a reliable source of valuable information for understanding human activities and behaviors in a disaster setting. The spatiotemporal distribution of disaster-related messages helps with real-time and quick assessment of the impact of disasters on infrastructure and human society across different regions. Using social media data also offers the advantages of saving time and cost, compared to other traditional data collection methods. As a first step of this study, this paper presents our work on collecting and analyzing the Twitter activities during 2018 Hurricane Michael in disaster-affected counties of Florida Panhandle area. The collected Twitter data was organized based on the geolocations of affected counties and was compared against the infrastructure resilience and social equity data of the affected counties. The results of the analysis indicate that (1) Twitter activities can be used as an important indicator of infrastructure resilience conditions, (2) socially vulnerable populations are not as active as general populations on social media in a disaster setting, and (3) vulnerable populations require a longer time for disaster recovery.« less