skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward a Bias-Aware Future for Mixed-Initiative Visual Analytics
Mixed-initiative visual analytics systems incorporate well-established design principles that improve users' abilities to solve problems. As these systems consider whether to take initiative towards achieving user goals, many current systems address the potential for cognitive bias in human initiatives statically, relying on fixed initiatives they can take instead of identifying, communicating and addressing the bias as it occurs. We argue that mixed-initiative design principles can and should incorporate cognitive bias mitigation strategies directly through development of mitigation techniques embedded in the system to address cognitive biases in situ. We identify domain experts in machine learning adopting visual analytics techniques and systems that incorporate existing mixed-initiative principles and examine their potential to support bias mitigation strategies. This examination considers the unique perspective these experts bring to visual analytics and is situated in existing user-centered systems that make exemplary use of design principles informed by cognitive theory. We then suggest informed opportunities for domain experts to take initiative toward addressing cognitive biases in light of their existing contributions to the field. Finally, we contribute open questions and research directions for designers seeking to adopt visual analytics techniques that incorporate bias-aware initiatives in future systems.  more » « less
Award ID(s):
1813281
PAR ID:
10226726
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Workshop on Trust and Expertise in Visual Analytics (TREX)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of cognitive heuristics often leads to fast and effective decisions. However, they can also systematically and predictably lead to errors known as cognitive biases. Strategies for minimizing or mitigating these biases, however, remain largely non-technological (e.g., training courses). The growing use of visual analytic (VA) tools for analysis and decision making enables a new class of bias mitigation strategies. In this work, we explore the ways in which the design of visualizations (vis) may be used to mitigate cognitive biases. We derive a design space comprised of 8 dimensions that can be manipulated to impact a user's cognitive and analytic processes and describe them through an example hiring scenario. This design space can be used to guide and inform future vis systems that may integrate cognitive processes more closely. 
    more » « less
  2. When interacting with information retrieval (IR) systems, users, affected by confirmation biases, tend to select search results that confirm their existing beliefs on socially significant contentious issues. To understand the judgments and attitude changes of users searching online, our study examined how cognitively biased users interact with algorithmically biased search engine result pages (SERPs). We designed three-query search sessions on debated topics under various bias conditions. We recruited 1,321 crowdsourcing participants and explored their attitude changes, search interactions, and the effects of confirmation bias. Three key findings emerged: 1) most attitude changes occur in the initial query of a search session; 2) Confirmation bias and result presentation on SERPs affect the number and depth of clicks in the current query and perceived familiarity with clicked results in subsequent queries; 3) The bias position also affects attitude changes of users with lower perceived openness to conflicting opinions. Our study goes beyond traditional simulation-based evaluation settings and simulated rational users, sheds light on the mixed effects of human biases and algorithmic biases in information retrieval tasks on debated topics, and can inform the design of bias-aware user models, human-centered bias mitigation techniques, and socially responsible intelligent IR systems. 
    more » « less
  3. Today, a great number of people with visual impairment take advantage of mainstream technology via assistive technology. User involvement in the systems development life cycle contributes to addressing user needs accurately. This article presents practical strategies to facilitate participatory design approaches involving users with visual impairment. Both researchers and professional designers will benefit these practical strategies by using them as action checklists for preparing, conducting, and concluding a participatory design session ethically and responsibly. 
    more » « less
  4. Over the past decade, several urban visual analytics systems and tools have been proposed to tackle a host of challenges faced by cities, in areas as diverse as transportation, weather, and real estate. Many of these tools have been designed through collaborations with urban experts, aiming to distill intricate urban analysis workflows into interactive visualizations and interfaces. However, the design, implementation, and practical use of these tools still rely on siloed approaches, resulting in bespoke systems that are difficult to reproduce and extend. At the design level, these tools undervalue rich data workflows from urban experts, typically treating them only as data providers and evaluators. At the implementation level, they lack interoperability with other technical frameworks. At the practical use level, they tend to be narrowly focused on specific fields, inadvertently creating barriers to cross-domain collaboration. To address these gaps, we present Curio, a framework for collaborative urban visual analytics. Curio uses a dataflow model with multiple abstraction levels (code, grammar, GUI elements) to facilitate collaboration across the design and implementation of visual analytics components. The framework allows experts to intertwine data preprocessing, management, and visualization stages while tracking the provenance of code and visualizations. In collaboration with urban experts, we evaluate Curio through a diverse set of usage scenarios targeting urban accessibility, urban microclimate, and sunlight access. These scenarios use different types of data and domain methodologies to illustrate Curio’s flexibility in tackling pressing societal challenges. Curio is available at urbantk.org/curio. 
    more » « less
  5. Classification of construction resource states, using sensor data analytics, has implications for improving informed decision-making for safety and productivity. However, training on sensor data analytics in construction education faces challenges owing to the complexity of analytical processes and the large stream of raw data involved. This research presents the development and user evaluation of ActionSens, a block-based end-user programming platform, for training students from construction-related disciplines to classify resources using sensor data analytics. ActionSens was designed for construction students to perform sensor data analytics such as activity recognition in construction. ActionSens was compared to traditional tools (i.e., combining Excel and MATLAB) used for performing sensor data analytics in terms of usability, workload, visual attention, and processing time using the System Usability Scale, NASA Task Load Index, eye-tracking, and qualitative feedback. Twenty students participated, performing data analytics tasks with both approaches. ActionSens exhibited a better user experience compared to conventional platforms, through higher usability scores and lower cognitive workload. This was evident through participants' interaction behavior, showcasing optimized attentional resource allocation across key tasks. The study contributes to knowledge by illustrating how the integration of construction domain information into block-based programming environments can equip students with the necessary skills for sensor data analytics. The development of ActionSens contributes to the Learning-for-Use framework by employing graphical and interactive programming objects to foster procedural knowledge for addressing challenges in sensor data analytics. The formative evaluation provides insights into how students engage with the programming environment and assesses the impact of the environment on their cognitive load. 
    more » « less