skip to main content


Title: Towards designing globular antimicrobial peptide mimics: role of polar functional groups in biomimetic ternary antimicrobial polymers
Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin.  more » « less
Award ID(s):
2004305
NSF-PAR ID:
10226727
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
8
ISSN:
1744-683X
Page Range / eLocation ID:
2090 to 2103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as “adhesives” which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles. 
    more » « less
  2. Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon. 
    more » « less
  3. Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H), and hydrophobic moments (μH), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α‐helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram‐negative (G(−)) inner membrane (IM) >gram‐positive (G(+))> Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2‐35 (16 amino acid [AA] residues) and E2‐05 (22 AAs), are predominantly helical in G(–) IM and G(+) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low‐angle and wide‐angle X‐ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulusKCdisplays nonmonotonic changes due to increasing concentrations of E2‐35 and E2‐05 in G(–) and G(+) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.

     
    more » « less
  4. Abstract

    Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique ~ 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treatedStaphylococcus aureusmimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function.

     
    more » « less
  5. Superresolution, single-particle tracking reveals effects of the cationic antimicrobial peptide LL-37 on theEscherichia colicytoplasm. Seconds after LL-37 penetrates the cytoplasmic membrane, the chromosomal DNA becomes rigidified on a length scale of ∼30 nm, evidenced by the loss of jiggling motion of specific DNA markers. The diffusive motion of a subset of ribosomes is also frozen. The mean diffusion coefficients of the DNA-binding protein HU and the nonendogenous protein Kaede decrease twofold. Roughly 108LL-37 copies flood the cell (mean concentration ∼90 mM). Much of the LL-37 remains bound within the cell after extensive rinsing with fresh growth medium. Growth never recovers. The results suggest that the high concentration of adsorbed polycationic peptides forms a dense network of noncovalent, electrostatic linkages within the chromosomal DNA and among 70S-polysomes. The bacterial cytoplasm comprises a concentrated collection of biopolymers that are predominantly polyanionic (e.g., DNA, ribosomes, RNA, and most globular proteins). In normal cells, this provides a kind of electrostatic lubrication, enabling facile diffusion despite high biopolymer volume fraction. However, this same polyanionic nature renders the cytoplasm susceptible to massive adsorption of polycationic agents once penetration of the membranes occurs. If this phenomenon proves widespread across cationic agents and bacterial species, it will help explain why resistance to antimicrobial peptides develops only slowly. The results suggest two design criteria for polycationic peptides that efficiently kill gram-negative bacteria: facile penetration of the outer membrane and the ability to alter the cytoplasm by electrostatically linking double-stranded DNA and 70S-polysomes.

     
    more » « less