skip to main content

Title: Multiple Degrees of Freedom in the Fish Skull and Their Relation to Hydraulic Transport of Prey in Channel Catfish
Synopsis Fish perform many complex manipulation behaviors without hands or flexible muscular tongues, instead relying on more than 20 movable skeletal elements in their highly kinetic skulls. How fish use their skulls to accomplish these behaviors, however, remains unclear. Most previous mechanical models have represented the fish skull using one or more planar four-bar linkages, which have just a single degree of freedom (DoF). In contrast, truncated-cone hydrodynamic models have assumed up to five DoFs. In this study, we introduce and validate a 3D mechanical linkage model of a fish skull that incorporates the pectoral girdle and mandibular and hyoid arches. We validate this model using an in vivo motion dataset of suction feeding in channel catfish and then use this model to quantify the DoFs in the fish skull, to categorize the motion patterns of the cranial linkage during feeding, and to evaluate the association between these patterns and food motion. We find that the channel catfish skull functions as a 17-link, five-loop parallel mechanism. Despite having 19 potential DoFs, we find that seven DoFs are sufficient to describe most of the motion of the cranial linkage, consistent with the fish skull functioning as a multi-DoF, manipulation system. Channel catfish use this linkage to generate three different motion patterns (rostrocaudal wave, caudorostral wave, and compressive wave), each with its own associated food velocity profile. These results suggest that biomechanical manipulation systems must have a minimum number of DoFs to effectively control objects, whether in water or air.  more » « less
Award ID(s):
1655756 1661129
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Integrative Organismal Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Synopsis Most predatory ray-finned fishes swallow their food whole, which can pose a significant challenge, given that prey items can be half as large as the predators themselves. How do fish transport captured food from the mouth to the stomach? Prior work indicates that, in general, fish use the pharyngeal jaws to manipulate food into the esophagus, where peristalsis is thought to take over. We used X-Ray Reconstruction of Moving Morphology to track prey transport in channel catfish (Ictalurus punctatus). By reconstructing the 3D motions of both the food and the catfish, we were able to track how the catfish move food through the head and into the stomach. Food enters the oral cavity at high velocities as a continuation of suction and stops in the approximate location of the branchial basket before moving in a much slower, more complex path toward the esophagus. This slow phase coincides with little motion in the head and no substantial mouth opening or hyoid depression. Once the prey is in the esophagus, however, its transport is surprisingly tightly correlated with gulping motions (hyoid depression, girdle retraction, hypaxial shortening, and mouth opening) of the head. Although the transport mechanism itself remains unknown, to our knowledge, this is the first description of synchrony between cranial expansion and esophageal transport in a fish. Our results provide direct evidence of prey transport within the esophagus and suggest that peristalsis may not be the sole mechanism of esophageal transport in catfish. 
    more » « less
  2. ABSTRACT Some fishes rely on large regions of the dorsal (epaxial) and ventral (hypaxial) body muscles to power suction feeding. Epaxial and hypaxial muscles are known to act as motors, powering rapid mouth expansion by shortening to elevate the neurocranium and retract the pectoral girdle, respectively. However, some species, like catfishes, use little cranial elevation. Are these fishes instead using the epaxial muscles to forcefully anchor the head, and if so, are they limited to lower-power strikes? We used X-ray imaging to measure epaxial and hypaxial length dynamics (fluoromicrometry) and associated skeletal motions (XROMM) during 24 suction feeding strikes from three channel catfish ( Ictalurus punctatus ). We also estimated the power required for suction feeding from oral pressure and dynamic endocast volume measurements. Cranial elevation relative to the body was small (<5 deg) and the epaxial muscles did not shorten during peak expansion power. In contrast, the hypaxial muscles consistently shortened by 4–8% to rotate the pectoral girdle 6–11 deg relative to the body. Despite only the hypaxial muscles generating power, catfish strikes were similar in power to those of other species, such as largemouth bass ( Micropterus salmoides ), that use epaxial and hypaxial muscles to power mouth expansion. These results show that the epaxial muscles are not used as motors in catfish, but suggest they position and stabilize the cranium while the hypaxial muscles power mouth expansion ventrally. Thus, axial muscles can serve fundamentally different mechanical roles in generating and controlling cranial motion during suction feeding in fishes. 
    more » « less

    The extinct nonavian dinosaurTyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis inT.rexis a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency inTyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions:Psittacus erithacus(fore–aft movement) andGekko gecko(mediolateral movement). Static finite element models ofPsittacus,Gekko, andTyrannosauruswere constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models ofTyrannosaurusexperienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull ofTyrannosauruswas functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.

    more » « less
  4. Abstract Modern computational and imaging methods are revolutionizing the fields of comparative morphology, biomechanics, and ecomorphology. In particular, imaging tools such as X-ray micro computed tomography (µCT) and diffusible iodine-based contrast enhanced CT allow observing and measuring small and/or otherwise inaccessible anatomical structures, and creating highly accurate three-dimensional (3D) renditions that can be used in biomechanical modeling and tests of functional or evolutionary hypotheses. But, do the larger datasets generated through 3D digitization always confer greater power to uncover functional or evolutionary patterns, when compared with more traditional methodologies? And, if so, why? Here, we contrast the advantages and challenges of using data generated via (3D) CT methods versus more traditional (2D) approaches in the study of skull macroevolution and feeding functional morphology in bats. First, we test for the effect of dimensionality and landmark number on inferences of adaptive shifts during cranial evolution by contrasting results from 3D versus 2D geometric morphometric datasets of bat crania. We find sharp differences between results generated from the 3D versus some of the 2D datasets (xy, yz, ventral, and frontal), which appear to be primarily driven by the loss of critical dimensions of morphological variation rather than number of landmarks. Second, we examine differences in accuracy and precision among 2D and 3D predictive models of bite force by comparing three skull lever models that differ in the sources of skull and muscle anatomical data. We find that a 3D model that relies on skull µCT scans and muscle data partly derived from diceCT is slightly more accurate than models based on skull photographs or skull µCT and muscle data fully derived from dissections. However, the benefit of using the diceCT-informed model is modest given the effort it currently takes to virtually dissect muscles from CT scans. By contrasting traditional and modern tools, we illustrate when and why 3D datasets may be preferable over 2D data, and vice versa, and how different methodologies can complement each other in comparative analyses of morphological function and evolution. 
    more » « less
  5. Abstract

    Understanding insect and fish interactions from a spatial and temporal perspective can have implications on large‐scale phenology in freshwater systems, yet current information is limited. We employed a novel approach of combining information from acoustic telemetry for six freshwater fish species and weather radar to assess the phenology of mayfly emergence and foraging patterns of freshwater fish. We hypothesized that freshwater fish conduct synchronous movements with annual mayfly hatches as a pulse resource opportunity. Generalized additive models were developed to assess movement distance as a function of species and time; before, during, and after annual mayfly hatch events. A cross‐section abundance index was also employed to quantify dynamics of aerial mayflies. Hatch dynamics revealed nocturnal emergence behaviour with annual variations in intensity, spatial extent, and origin. We found that the hatch was likely a pulse resource feeding opportunity for channel catfish, common carp, freshwater drum, and walleye instead of a synchronized feeding event. Bigmouth buffalo and lake sturgeon utilized riverine habitat away from the hatch and did not likely forage on the emerging mayflies. Remote sensing of fishes and emergent insects using our approach is the first attempt at bridging the capabilities of fisheries ecology and aeroecology to advance movement ecology.

    more » « less