skip to main content


Title: Mixed Ionic-Electronic Transport in Polymers
Polymeric mixed ionic-electronic conductors (MIECs) combine aspects of conjugated polymers, polymer electrolytes, and polyelectrolytes to simultaneously transport and couple ionic and electronic charges, opening exciting new applications in energy storage and conversion, bioelectronics, and display technologies. The many applications of polymeric MIECs lead to a wide range of transport conditions. Ionic and electronic transport are directly coupled through electrochemical doping, while the mechanisms of ionic and electronic transport depend on distinctly different chemical functionality, (macro)molecular structure, and morphology. Despite this, ionic and electronic transport are surprisingly tunable, independent of one another. We review the various types of polymeric MIECs, the mechanisms of ionic and electronic charge transport across conditions, and the interrelations between the two, with special emphasis on the unique aspects of polymeric MIEC transport phenomena. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1751308
NSF-PAR ID:
10226949
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Materials Research
Volume:
51
Issue:
1
ISSN:
1531-7331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A major limitation for polymeric mixed ionic/electronic conductors (MIECs) is the trade-off between ionic and electronic conductivity; changes made that improve one typically hinder the other. In order to address this fundamental problem, this work provides insight into ways that we could improve one type of conduction without hindering the other. We investigated a common oligoethylene glycol side chain polymer by adjusting the oxygen atom content and position, providing structural insights for materials that better balanced the two conduction pathways. The investigated polymer series showed the prototypical conflict between ionic and electronic conduction for oxygen atom content, with increasing oxygen atom content increasing ionic conductivity, but decreasing electronic conductivity; however, by increasing the oxygen atom distance from the polymer backbone, both ionic and electronic conductivity could be improved. Following these rules, we show that poly(3-(methoxyethoxybutyl)thiophene), when blended with lithium bistrifluoromethanesulfonimide (LiTFSI), matches the ionic conductivity of a comparable MIEC [poly(3-(methoxyethoxyethoxymethyl)thiophene)], while simultaneously showing higher electronic conductivity, highlighting the potential of this design strategy. We also provide strategies for tuning the MIEC performance to fit a desired application, depending on if electronic, ionic, or balanced conduction is most important. These results have implications beyond just polythiophene-based MIECs, as these strategies for balancing backbone crystallization and coordinating group interconnectivity apply for all semicrystalline conjugated polymers. 
    more » « less
  2. Solid‐state mixed ionic–electronic conductors (MIECs) in which ionic transport is commonly accompanied by predominant electronic conductivity underpin key technologies and require universal characterization methods for monitoring transport at the nanoscale, at both high and near ambient temperatures, the latter being especially challenging. In this study, a novel dynamic current–voltage analysis technique is utilized to decouple ionic and electronic transport properties from each other. The versatility of the method is demonstrated by enabling measurement of the oxygen vacancy mobility in Pr0.1Ce0.9O2−δthin films, across an unusually wide temperature range, from 35 to 500 °C. Despite the presence of predominant electronic conduction, the oxygen vacancy mobility in Pr0.1Ce0.9O2−δis measured, being 6.8 × 10−6cm2V−1s−1at 500 °C, decreasing by seven orders of magnitude down to 35 °C, and following a single thermal activation energy of 0.82 ± 0.02 eV. A comparison with previous reports on oxygen vacancy transport and with the one derived in this study from impedance spectroscopy, interpreted with the Jamnik–Maier model, further confirms the dynamic current–voltage analysis results. This method can more generally be applied to other types of MIECs, thereby enabling deeper insights into mobile ionic defect transport and accompanying thermodynamic properties.

     
    more » « less
  3. Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications. 
    more » « less
  4. null (Ed.)
    Organic electrochemical transistors (OECTs) have been revived as potentially versatile platforms for bioelectronic applications due to their high transconductance, direct ionic-electronic coupling, and unique form factors. This perceived applicability to bioelectronics can be attributed to the incorporation of organic mixed conductors that facilitate both ionic and electronic transport, enabling material-inherent translation from biological signals to abiotic readouts. In the past decade, multiple synthetic breakthroughs have yielded channel materials that exhibit significant hole/electron transport while displaying electroactivity in aqueous media. Yet, implicit in the rationale of OECTs as bioelectronic devices is they can be fabricated to be mechanically compatible with biological systems, even though unified guidelines for deformable OECTs remain unclear. In this Perspective, we highlight recent advances for imparting deformability. Specifically, materials selection, design, and chemistry for integral parts of the transistor – substrate, electrolyte, interconnects, and (polymeric) channel materials—will be discussed in the context of benchmarks set by select bioelectronics applications. We conclude by identifying key areas for future research towards mechanically compliant OECTs. 
    more » « less
  5. Both aliovalent doping and the charge state of multivalent lattice ions determine the oxygen non-stoichiometry ( δ ) of mixed ionic and electronic conductors (MIECs). Unfortunately, it has been challenging for both modeling and experiments to determine the multivalent ion charge states in MIECs. Here, the Fe charge state distribution was determined for various compositions and phases of the MIEC La 1−x Sr x FeO 3−δ (LSF) using the spin-polarized density functional theory (DFT)-predicted magnetic moments on Fe. It was found that electron occupancy and crystal-field-splitting-induced differences between the Fe 3d-orbitals of the square pyramidally coordinated, oxygen-vacancy-adjacent Fe atoms and the octahedrally-coordinated, oxygen-vacancy-distant-Fe atoms determined whether the excess electrons produced during oxygen vacancy formation remained localized at the first nearest neighbor Fe atoms (resulting in small oxygen vacancy polarons, as in LaFeO 3 ) or were distributed to the second-nearest-neighbor Fe atoms (resulting in large oxygen vacancy polarons, as in SrFeO 3 ). The progressively larger polaron size and anisotropic shape changes with increasing Sr resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical δ threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations cause a decrease in the mobile oxygen vacancy site fraction ( X ), both δ and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. 
    more » « less