skip to main content


Search for: All records

Award ID contains: 1751308

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bioelectronics based on organic mixed conductors offers tremendous application potential in biological interfacing, drug delivery systems, and neuromorphic devices. The ion injection and water swelling upon electrochemical switching can significantly change the molecular packing of polymeric mixed conductors and thus influence the device performance. Herein, we quantify ion and water injection, and analyze the change of microscopic molecular packing of typical polymeric mixed conducting materials, namely poly(3,4‑ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy) ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p(g2T‐TT)), by integrating electrochemical quartz crystal microbalance with dissipation monitoring, in situ charge accumulation spectroscopy, and electrical current‐voltage measurement. The penetration of ions and water can lead to viscous and disordered microstructures in organic mixed conductors and the water uptake property plays a more dominant role in morphological disruption compared with ion uptake is demonstrated. This study demonstrates the potential application of the combined optical, gravimetric, and electrical operando platform in evaluating the structural kinetics of organic mixed conductors and highlights the importance of concertedly tuning the hydration process, structural integrity, and charge transport properties of organic mixed conductors in order to achieve high performance and stable bioelectronic devices.

     
    more » « less
  2. Abstract

    Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine‐tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure–property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular‐design strategies for isoindigo‐based mixed conductors that can support efficient p‐type, n‐type, and ambipolar transistor operation in an aqueous environment.

     
    more » « less
  3. Abstract

    Electroactive polymer thin films undergo repeated reversible structural change during operation in electrochemical applications. While synchrotron X‐ray scattering is powerful for the characterization of stand‐alone and ex situ organic thin films, in situ/operando structural characterization has been underutilized—in large part due to complications arising from supporting electrolyte scattering. This has greatly hampered the development of application relevant structure property relationships. Therefore, a new methodology for in situ/operando X‐ray characterization that separates the incident and scattered X‐ray beam path from the electrolyte is developed. As a proof of concept, the operando structural characterization of weakly‐scattering, organic mixed conducting thin films in an aqueous electrolyte environment is demonstrated, accessing previously unexplored changes in the π‐π peak and diffuse scatter, while capturing the solvent swollen thin film structure which is inaccessible in previous ex situ studies. These in situ/operando measurements improve the sensitivity to structural changes, capturing minute changes not possible ex situ, and have multimodal potential such as combined Raman measurements that also serve to validate the true in situ/operando conditions of the cell. Finally, new directions enabled by this in situ/operando cell design are examined and state of the art measurements are compared.

     
    more » « less
  4. Abstract

    Associative learning, a critical learning principle to improve an individual’s adaptability, has been emulated by few organic electrochemical devices. However, complicated bias schemes, high write voltages, as well as process irreversibility hinder the further development of associative learning circuits. Here, by adopting a poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran composite as the active channel, we present a non-volatile organic electrochemical transistor that shows a write bias less than 0.8 V and retention time longer than 200 min without decoupling the write and read operations. By incorporating a pressure sensor and a photoresistor, a neuromorphic circuit is demonstrated with the ability to associate two physical inputs (light and pressure) instead of normally demonstrated electrical inputs in other associative learning circuits. To unravel the non-volatility of this material, ultraviolet-visible-near-infrared spectroscopy, X-ray photoelectron spectroscopy and grazing-incidence wide-angle X-ray scattering are used to characterize the oxidation level variation, compositional change, and the structural modulation of the poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran films in various conductance states. The implementation of the associative learning circuit as well as the understanding of the non-volatile material represent critical advances for organic electrochemical devices in neuromorphic applications.

     
    more » « less
  5. Abstract

    The structure and packing of organic mixed ionic–electronic conductors have an especially significant effect on transport properties. In operating devices, this structure is not fixed but is responsive to changes in electrochemical potential, ion intercalation, and solvent swelling. Toward this end, the steady‐state and transient structure of the model organic mixed conductor, poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is characterized using multimodal time‐resolved operando techniques. Steady‐state operando X‐ray scattering reveals a doping‐induced lamellar expansion of 1.6 Å followed by 0.4 Å relaxation at high doping levels. Time‐resolved operando X‐ray scattering reveals asymmetric rates of lamellar structural change during doping and dedoping that do not directly depend on potential or charging transients. Time‐resolved spectroscopy establishes a link between structural transients and the complex kinetics of electronic charge carrier subpopulations, in particular the polaron–bipolaron equilibrium. These findings provide insight into the factors limiting the response time of organic mixed‐conductor‐based devices, and present the first real‐time observation of the structural changes during doping and dedoping of a conjugated polymer system via X‐ray scattering.

     
    more » « less
  6. Abstract

    Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor‐insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free‐standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge‐carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.

     
    more » « less
  7. Abstract

    Organic electrochemical transistors (OECTs) are the building blocks of biosensors, neuromorphic devices, and complementary circuits. One rule in the materials design for OECTs is the inclusion of a hydrophilic component in the chemical structure to enable ion transport in the film. Here, it is shown that the ladder‐type, side‐chain free polymer poly(benzimidazobenzophenanthroline) (BBL) performs significantly better in OECTs than the donor–acceptor type copolymer bearing hydrophilic ethylene glycol side chains (P‐90). A combination of electrochemical techniques reveals that BBL exhibits a more efficient ion‐to‐electron coupling and higher OECT mobility than P‐90. In situ atomic force microscopy scans evidence that BBL, which swells negligibly in electrolytes, undergoes a drastic and permanent change in morphology upon electrochemical doping. In contrast, P‐90 substantially swells when immersed in electrolytes and shows moderate morphology changes induced by dopant ions. Ex situ grazing incidence wide‐angle X‐ray scattering suggests that the particular packing of BBL crystallites is minimally affected after doping, in contrast to P‐90. BBL's ability to show exceptional mixed transport is due to the crystallites’ connectivity, which resists water uptake. This side chain‐free route for the design of mixed conductors could bring the n‐type OECT performance closer to the bar set by their p‐type counterparts.

     
    more » « less
  8. Abstract

    A series of semiconducting small molecules with bithiophene or bis‐3,4‐ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p‐type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure‐of‐merit value of 0.81 F V−1cm−1s−1are obtained.

     
    more » « less
  9. Abstract

    Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‐products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox‐active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‐reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high‐performance, state‐of‐the‐art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2O2), a reactive side‐product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox‐active organic semiconductors based on donor–acceptor copolymers that prevents the formation of H2O2during device operation. This study elucidates the previously overlooked side‐reactions between redox‐active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‐gated devices in application‐relevant environments.

     
    more » « less
  10. Abstract

    Organic electrochemical transistors (OECTs) exhibit strong potential for various applications in bioelectronics, especially as miniaturized, point‐of‐care biosensors, because of their efficient transducing ability. To date, however, the majority of reported OECTs have relied on p‐type (hole transporting) polymer mixed conductors, due to the limited number of n‐type (electron transporting) materials suitable for operation in aqueous electrolytes, and the low performance of those which exist. It is shown that a simple solvent‐engineering approach boosts the performance of OECTs comprising an n‐type, naphthalenediimide‐based copolymer in the channel. The addition of acetone, a rather bad solvent for the copolymer, in the chloroform‐based polymer solution leads to a three‐fold increase in OECT transconductance, as a result of the simultaneous increase in volumetric capacitance and electron mobility in the channel. The enhanced electrochemical activity of the polymer film allows high‐performance glucose sensors with a detection limit of 10 × 10−6mof glucose and a dynamic range of more than eight orders of magnitude. The approach proposed introduces a new tool for concurrently improving the conduction of ionic and electronic charge carriers in polymer mixed conductors, which can be utilized for a number of bioelectronic applications relying on efficient OECT operation.

     
    more » « less