skip to main content


Title: DNA Functionality with Photoswitchable Hydrazone Cytidine**
Abstract

A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. TheE‐Zisomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by1H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activatedZform isomer of this hydrazone‐cytidine with a six‐member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by usingBstDNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA‐enzyme interactions using the cell friendly blue light irradiation.

 
more » « less
Award ID(s):
1845486 1715234
NSF-PAR ID:
10226990
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
27
Issue:
32
ISSN:
0947-6539
Page Range / eLocation ID:
p. 8372-8379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Synthetic genetics is an area of synthetic biology that aims to extend the properties of heredity and evolution to artificial genetic polymers, commonly known as xeno‐nucleic acids or XNAs. In addition to establishing polymerases that are able to convert genetic information back and forth between DNA and XNA, efforts are underway to construct XNAs with expanded chemical functionality. α‐L‐Threose nucleic acid (TNA), a type of XNA that is recalcitrant to nuclease digestion and amenable to Darwinian evolution, provides a model system for developing XNAs with functional groups that are not present in natural DNA and RNA. Here, we describe the synthesis and polymerase activity of a cytidine TNA triphosphate analog (6‐phenyl‐pyrrolocytosine, tCpTP) that maintains Watson‐Crick base pairing with guanine. Polymerase‐mediated primer extension assays show that tCpTP is an efficient substrate for Kod‐RI, a DNA‐dependent TNA polymerase developed to explore the functional properties of TNA byin vitroselection. Fidelity studies reveal that a cycle of TNA synthesis and reverse transcription occurs with 99.9% overall fidelity when tCpTP and 7‐deaza‐tGTP are present as TNA substrates. This result expands the toolkit of TNA building blocks available forin vitroselection.

     
    more » « less
  2. Abstract

    A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamineso‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R,2R)‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs.

     
    more » « less
  3. Abstract

    A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamineso‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R,2R)‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs.

     
    more » « less
  4. Abstract

    The synthesis of a fluorescent covalent organic framework (COF) using perylene and pyrene building blocks (PEPy‐COF), via a one‐pot condensation reaction is reported. PEPy‐COF is crystallized into 2D nanosheets with a cubic and prismatic crystalline morphology and demonstrates structural stability at temperatures up to 500 °C. The structural morphology is confirmed using X‐ray diffraction and atomic‐level simulations. These 2D porous polymer sheets form a tetragonal framework that is found to have a high specific surface area of 772 m2g−1. Based on the definition of porous materials, the network is mesoporous with an observed pore size of 3.03 nm, which is in good agreement with the material's calculated pore size. The experimentally obtained HOMO‐LUMO band gap is 2.62 eV, confirming the semiconducting nature of PEPy‐COF. PEPy‐COF emits a shiny blue luminescence under UV and visible light. This luminescence intensity is temperature‐dependent in solvents with different polarities and dielectric constants demonstrating that the PEPy‐COF has potential use in a wide range of temperature‐sensing devices. The fluorescence intensity ratio is similar for different temperatures under ultra‐sound conditions and varying solvents.

     
    more » « less
  5. Abstract

    Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500) in water is enabled using CuBr2with tris(2‐pyridylmethyl)amine (TPMA) as a ligand under blue or green‐light irradiation without requiring any additional reagent, such as a photo‐reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18–1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co‐catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+absorbs light.

     
    more » « less