A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamines
A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamines
- NSF-PAR ID:
- 10421874
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 30
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract o ‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R ,2R )‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs. -
null (Ed.)Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.more » « less
-
Abstract Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long‐range π‐conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF‐based energy transfer Ni catalysis. A pyrene‐based COF with sp2carbon‐conjugation was synthesized and used to coordinate NiIIcenters through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
-
Abstract Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long‐range π‐conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF‐based energy transfer Ni catalysis. A pyrene‐based COF with sp2carbon‐conjugation was synthesized and used to coordinate NiIIcenters through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.
-
Abstract Herein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combining
N ,N′ ,N′ ,N ′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state13C multi cross‐polarization magic angle spinning NMR spectroscopy of the13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential ofN ‐oxide‐based porous materials for atmospheric water harvesting and CO2capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated.