skip to main content

Title: Hybrid Ag–LiNbO 3 nanocomposite thin films with tailorable optical properties
Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Herein, we deposited Ag–LiNbO 3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into the LNO matrix by the co-deposition of Ag and LNO using a pulsed laser deposition (PLD) method. The density and size of Ag NPs were tailored by varying the Ag composition. Low-density and high-density Ag–LNO nanocomposite thin films were deposited and their optical properties, such as transmittance spectra, ellipsometry measurement, as well as angle-dependent and polarization-resolved reflectivity spectra, were explored. The Ag–LNO films show surface plasmon resonance (SPR) in the visible range, tunable optical constants and optical anisotropy, which are critical for photonic device applications.
; ; ; ;
Award ID(s):
1809520 1565822
Publication Date:
Journal Name:
Nanoscale Advances
Page Range or eLocation-ID:
1121 to 1126
Sponsoring Org:
National Science Foundation
More Like this
  1. A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phasemore »transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures.« less
  2. Self-assembled oxide–metallic alloy nanopillars as hybrid plasmonic metamaterials ( e.g. , ZnO–Ag x Au 1−x ) in a thin film form have been grown using a pulsed laser deposition method. The hybrid films were demonstrated to be highly tunable via systematic tuning of the oxygen background pressure during deposition. The pressure effects on morphology and optical properties have been investigated and found to be critical to the overall properties of the hybrid films. Specifically, low background pressure results in the vertically aligned nanocomposite (VAN) form while the high-pressure results in more lateral growth of the nanoalloys. Strong surface plasmon resonance was observed in the UV-vis region and a hyperbolic dielectric function was achieved due to the anisotropic morphology. The oxide–nanoalloy hybrid material grown in this work presents a highly effective approach for tuning the binary nanoalloy morphology and properties through systematic parametric changes, important for their potential applications in integrated photonics and plasmonics such as sensors, energy harvesting devices, and beyond.
  3. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics.
  4. We have demonstrated the capability of a nanocomposite film made of a 2D array of Ag nanoparticles embedded into a poly(glycidyl methacrylate), PGMA, matrix to monitor the presence of organic vapors in the atmosphere. Specifically, changes in the extinction spectra of the submicron nanocomposite film are used to sense the vapors. The transformations of the spectra are fully reversible and reproducible upon multiple exposures. We associate this reversibility and reproducibility with the construction of the nanocomposite film where the cross-linked PGMA network is able to spatially restore its structure upon deswelling. The structure of the extinction spectrum of the film is governed by a collective surface plasmon mode excited in the Ag NPs array. It was found that spectral bands associated with normal and tangential components of the plasmon mode change their width and position when the nanocomposite is exposed to organic vapors. This is due to increasing the spacing between neighboring NPs and a decrease of the refractive index of the polymer caused by swelling of the PGMA matrix. Therefore, the level of spectral transformation is directly related to the level of polymer–solvent thermodynamic affinity where the higher affinity corresponds to the higher level of the swelling. Therefore, wemore »expect that the nanocomposite films (when designed for a particular solvent) can be effectively used as a sensing element in a low-cost volatile organic compounds (VOC) sensor device operating in visual light.« less
  5. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li +more »-co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications.« less