By combining a newly developed two-color laser pulsed field ionization-photoion (PFI-PI) source and a double-quadrupole–double-octopole (DQDO) mass spectrometer, we investigated the integral cross sections ( σ s) of the vanadium cation (V + ) toward the activation of CO 2 in the center-of-mass kinetic energy ( E cm ) range from 0.1 to 10.0 eV. Here, V + was prepared in single spin–orbit levels of its lowest electronic states, a 5 D J ( J = 0–4), a 5 F J ( J = 1–5), and a 3 F J ( J = 2–4), with well-defined kinetic energies. For both product channels VO + + CO and VCO + + O identified, V + (a 3 F 2,3 ) is found to be greatly more reactive than V + (a 5 D 0,2 ) and V + (a 5 F 1,2 ), suggesting that the V + + CO 2 reaction system mainly proceeds via a “weak quintet-to-triplet spin-crossing” mechanism favoring the conservation of total electron spins. In addition, no J -state dependence was observed. The distinctive structures of the quantum electronic state selected integral cross sections observed as a function of E cm and the electronic state of themore »
Quantum electronic control on chemical activation of methane by collision with spin–orbit state selected vanadium cation
By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J more »
- Award ID(s):
- 1763319
- Publication Date:
- NSF-PAR ID:
- 10227075
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 1
- Page Range or eLocation-ID:
- 273 to 286
- ISSN:
- 1463-9076
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′more »
-
The kinetic energy dependences of the reactions of Pt + ( 2 D 5/2 ) with SO 2 were studied using a guided ion beam tandem mass spectrometer and theory. The observed cationic products are PtO + and PtSO + , with small amounts of PtS + , all formed in endothermic reactions. Modeling the kinetic energy dependent product cross sections allows determination of the product bond dissociation energies (BDEs): D 0 (Pt + –O) = 3.14 ± 0.11 eV, D 0 (Pt + –S) = 3.68 ± 0.31 eV, and D 0 (Pt + –SO) = 3.03 ± 0.12 eV. The oxide BDE agrees well with more precise literature values, whereas the latter two results are the first such measurements. Quantum mechanical calculations were performed for PtO + , PtS + , PtO 2 + , and PtSO + at the B3LYP and coupled-cluster with single, double, and perturbative triple [CCSD(T)] levels of theory using the def2-XZVPPD (X = T, Q) and aug-cc-pVXZ (X = T, Q, 5) basis sets and complete basis set extrapolations. These theoretical BDEs agree well with the experimental values. After including empirical spin–orbit corrections, the product ground states are determined as PtO + ( 4 Σ 3/2more »
-
The millimeter/submillimeter-wave spectrum of the SiP radical (X 2 Π i ) has been recorded using direct absorption spectroscopy in the frequency range of 151–532 GHz. SiP was synthesized in an AC discharge from the reaction of SiH 4 and gas-phase phosphorus, in argon carrier gas. Both spin–orbit ladders were observed. Fifteen rotational transitions were measured originating in the Ω = 3/2 ladder, and twelve in the Ω = 1/2 substate, each exhibiting lambda doubling and, at lower frequencies, hyperfine interactions from the phosphorus nuclear spin of I = 1/2. The lambda-doublets in the Ω = 1/2 levels appeared to be perturbed at higher J, with the f component deviating from the predicted pattern, likely due to interactions with the nearby excited A 2 Σ + electronic state, where ΔE Π-Σ ∼ 430 cm −1 . The data were analyzed using a Hund’s case a β Hamiltonian and rotational, spin–orbit, lambda-doubling, and hyperfine parameters were determined. A 2 Π/ 2 Σ deperturbation analysis was also performed, considering spin–orbit, spin-electronic, and L-uncoupling interactions. Although SiP is clearly not a hydride, the deperturbed parameters derived suggest that the pure precession hypothesis may be useful in assessing the 2 Π/ 2 Σ interaction. Interpretation ofmore »
-
The known sandwich compound [η 5 -(CH 2 ) 3 N 2 (BPh) 2 CMe] 2 Fe in which adjacent C 2 units are replaced by isoelectronic BN units can be considered as a boraza analogues of ferrocene similar to borazine, B 3 N 3 H 6 , considered as a boraza analogue of benzene. In this connection, the related bis(1,2,3,5-tetramethyl-1,2-diaza-3,5-diborolyl) derivatives (Me 4 B 2 N 2 CH) 2 M (M = Ti, V, Cr, Mn, Fe, Co, Ni) for all of the first row transition metals have been optimized using density functional theory for comparison with the isoelectronic tetramethylcyclopentadienyl derivatives (Me 4 C 5 H) 2 M. Low-energy sandwich structures having parallel B 2 N 2 C rings in a trans orientation are found for all seven metals. The 1,2-diaza-3,5-diborolyl ligand appears to be a weaker field ligand than the isoelectronic cyclopentadienyl ligand as indicated by higher spin ground states for some (η 5 -Me 4 B 2 N 2 CH) 2 M sandwich compounds relative to the corresponding metallocenes (η 5 -Me 4 C 5 H) 2 M. Thus (η 5 -Me 4 B 2 N 2 CH) 2 Cr has a quintet ground state in contrastmore »