skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum state control on the chemical reactivity of a transition metal vanadium cation in carbon dioxide activation
By combining a newly developed two-color laser pulsed field ionization-photoion (PFI-PI) source and a double-quadrupole–double-octopole (DQDO) mass spectrometer, we investigated the integral cross sections ( σ s) of the vanadium cation (V + ) toward the activation of CO 2 in the center-of-mass kinetic energy ( E cm ) range from 0.1 to 10.0 eV. Here, V + was prepared in single spin–orbit levels of its lowest electronic states, a 5 D J ( J = 0–4), a 5 F J ( J = 1–5), and a 3 F J ( J = 2–4), with well-defined kinetic energies. For both product channels VO + + CO and VCO + + O identified, V + (a 3 F 2,3 ) is found to be greatly more reactive than V + (a 5 D 0,2 ) and V + (a 5 F 1,2 ), suggesting that the V + + CO 2 reaction system mainly proceeds via a “weak quintet-to-triplet spin-crossing” mechanism favoring the conservation of total electron spins. In addition, no J -state dependence was observed. The distinctive structures of the quantum electronic state selected integral cross sections observed as a function of E cm and the electronic state of the V + ion indicate that the difference in the chemical reactivity of the title reaction originated from the quantum-state instead of energy effects. Furthermore, this work suggests that the selection of the quantum electronic states a 3 F J ( J = 2–4) of the transition metal V + ion can greatly enhance the efficiency of CO 2 activation.  more » « less
Award ID(s):
1763319
PAR ID:
10093016
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
13
ISSN:
1463-9076
Page Range / eLocation ID:
6868 to 6877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  2. The kinetic energy dependences of the reactions of Pt + ( 2 D 5/2 ) with SO 2 were studied using a guided ion beam tandem mass spectrometer and theory. The observed cationic products are PtO + and PtSO + , with small amounts of PtS + , all formed in endothermic reactions. Modeling the kinetic energy dependent product cross sections allows determination of the product bond dissociation energies (BDEs): D 0 (Pt + –O) = 3.14 ± 0.11 eV, D 0 (Pt + –S) = 3.68 ± 0.31 eV, and D 0 (Pt + –SO) = 3.03 ± 0.12 eV. The oxide BDE agrees well with more precise literature values, whereas the latter two results are the first such measurements. Quantum mechanical calculations were performed for PtO + , PtS + , PtO 2 + , and PtSO + at the B3LYP and coupled-cluster with single, double, and perturbative triple [CCSD(T)] levels of theory using the def2-XZVPPD (X = T, Q) and aug-cc-pVXZ (X = T, Q, 5) basis sets and complete basis set extrapolations. These theoretical BDEs agree well with the experimental values. After including empirical spin–orbit corrections, the product ground states are determined as PtO + ( 4 Σ 3/2 ), PtS + ( 4 Σ 3/2 ), PtO 2 + ( 2 Σ g + ), and PtSO + ( 2 A′). Potential energy profiles including intermediates and transition states for each reaction were also calculated at the B3LYP/def2-TZVPPD level. Periodic trends in the thermochemistry of the group 9 metal chalcogenide cations are compared, and the formation of PtO + from the Pt + + SO 2 reaction is compared with those from the Pt + + O 2 , CO 2 , CO, and NO reactions. 
    more » « less
  3. Oxidation of distorted square-planar perfluoropinacolate Co compound [Co II (pin F ) 2 ] 2− , 1 , to [Co III (pin F ) 2 ] 1− , 2 , is reported. Rigidly square-planar 2 has an intermediate-spin, S = 1, ground state and very large zero-field splitting (ZFS) with D = 67.2 cm −1 ; | E | = 18.0 cm −1 , ( E / D = 0.27), g ⊥ = 2.10, g ‖ = 2.25 and χ TIP = 1950 × 10 −6 cm 3 mol −1 . This Co( iii ) species, 2 , reacts with ROS to oxidise two (pin F ) 2− ligands to form tetrahedral [Co II (Hpfa) 4 ] 2− , 3 . 
    more » « less
  4. The millimeter/submillimeter-wave spectrum of the SiP radical (X 2 Π i ) has been recorded using direct absorption spectroscopy in the frequency range of 151–532 GHz. SiP was synthesized in an AC discharge from the reaction of SiH 4 and gas-phase phosphorus, in argon carrier gas. Both spin–orbit ladders were observed. Fifteen rotational transitions were measured originating in the Ω = 3/2 ladder, and twelve in the Ω = 1/2 substate, each exhibiting lambda doubling and, at lower frequencies, hyperfine interactions from the phosphorus nuclear spin of I = 1/2. The lambda-doublets in the Ω = 1/2 levels appeared to be perturbed at higher J, with the f component deviating from the predicted pattern, likely due to interactions with the nearby excited A 2 Σ + electronic state, where ΔE Π-Σ ∼ 430 cm −1 . The data were analyzed using a Hund’s case a β Hamiltonian and rotational, spin–orbit, lambda-doubling, and hyperfine parameters were determined. A 2 Π/ 2 Σ deperturbation analysis was also performed, considering spin–orbit, spin-electronic, and L-uncoupling interactions. Although SiP is clearly not a hydride, the deperturbed parameters derived suggest that the pure precession hypothesis may be useful in assessing the 2 Π/ 2 Σ interaction. Interpretation of the Fermi contact term, b F , the spin-dipolar constant, c, and the nuclear spin-orbital parameter, a, indicates that the orbital of the unpaired electron is chiefly p π in character. The bond length in the v = 0 level was found to be r 0 = 2.076 Å, suggestive of a double bond between the silicon and phosphorus atoms. 
    more » « less
  5. null (Ed.)
    Abstract A metallic state with a vanishing activation gap, at a filling factor $$\nu = 8/5$$ ν = 8 / 5 in the untilted specimen with $$n= 2 \times 10^{11} cm^{-2}$$ n = 2 × 10 11 c m - 2 , and at $$\nu = 4/3$$ ν = 4 / 3 at $$n=1.2 \times 10^{11} cm^{-2}$$ n = 1.2 × 10 11 c m - 2 under a $$\theta = 66^{0}$$ θ = 66 0 tilted magnetic field, is examined through a microwave photo-excited transport study of the GaAs/AlGaAs 2 dimensional electron system (2DES). The results presented here suggest, remarkably, that at the possible degeneracy point of states with different spin polarization, where the 8/5 or 4/3 FQHE vanish, there occurs a peculiar marginal metallic state that differs qualitatively from a quantum Hall insulating state and the usual quantum Hall metallic state. Such a marginal metallic state occurs most prominently at $$\nu =8/5$$ ν = 8 / 5 , and at $$\nu =4/3$$ ν = 4 / 3 under tilt as mentioned above, over the interval $$1 \le \nu \le 2$$ 1 ≤ ν ≤ 2 , that also includes the $$\nu = 3/2$$ ν = 3 / 2 state, which appears perceptibly gapped in the first instance. 
    more » « less