skip to main content


Title: Biomechanical regulation of breast cancer metastasis and progression
Abstract

Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.

 
more » « less
Award ID(s):
1757885
NSF-PAR ID:
10227126
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca2+) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca2+oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca2+-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca2+signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca2+oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca2+signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.

     
    more » « less
  2. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  3. Background: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways. 
    more » « less
  4. Tumor stiffness has been associated with malignancy and increased risk for metastasis. Extensive research has been done investigating breast cancer cell lines’ responsiveness to surfaces of varying rigidities as well as examining the biophysical properties of breast cancer tumor samples. However, there is a critical gap regarding the relationship between cells’ mechanosensitivity in conjunction to biophysical properties of their extracellular matrix environment. To explore this relationship, we will analyze single-cell mechanosensitivity in comparison to tumor rigidity via shearwave ultrasound elastogrophy (SWE). Given the putative affiliation, we hypothesize that cells expressing invasive mechanosensitivity profiles will correlate with stiffer tumor regions. Using collagen gels containing different cell types, we derived biopsy-sized samples allowing us to optimize single-cell mechanosensitivity analysis. Cells were stained using different dyes corresponding to invasiveness. Subsequently, we analyzed their morphology. Morphological identification within organoid environments would allow for single-cell analysis without the aggression of tissue digestion, though preliminary results suggest high heterogeneity may not allow for confident cell identification solely on morphology. Thus, inquisition into cell viability and integrity was explored by analyzing the effects of tissue digestion with HyQtase on single-cells. Cell count and live-dead stain via flow cytometry allowed for analysis of single-cell viability. Lastly, cell integrity was evaluated by a 2D adhesion assay of isolated cells. The live/dead stain revealed that digestion resulted in isolation of approximately 10% of the original 500,000 cell population with 90–97% of the isolated population being live-cells (invasive and non-invasive respectively). Furthermore, the adhesion assay showed that these isolated single cells retained the ability to adhere to new surfaces, with no difference between the invasive and non-invasive cell types. These results show that cells are able to retain mechanosensitive properties following enzymatic digestion. However, they also suggest our digestion procedure is not aggressive enough to isolate invasive subpopulations that are more strongly imbedded in the original tissues. Development of these novel techniques will allow for accurate and confident analysis of precious human biopsy samples. Insight into the relationship between single-cell mechanosensitivity and tumor biophysical properties could elucidate pathways for metastasis inhibition and prevention. 
    more » « less
  5. Abstract

    Breast cancer brain metastasis marks the most advanced stage of breast cancer no longer considered curable with a median survival period of ∼4–16 months. Apart from the genetic susceptibility (subtype) of breast tumors, brain metastasis is also dictated by the biophysical/chemical interactions of tumor cells with native brain microenvironment, which remain obscure, primarily due to the lack of tunable biomimeticin vitromodels. To address this need, we utilized a biomimetic hyaluronic acid (HA) hydrogel platform to elucidate the impact of matrix stiffness on the behavior of MDA‐MB‐231Br cells, a brain metastasizing variant of the triple negative breast cancer line MDA‐MB‐231. We prepared HA hydrogels of varying stiffness (0.2–4.5 kPa) bracketing the brain relevant stiffness range to recapitulate the biophysical cues provided by brain extracellular matrix. In this system, we observed that the MDA‐MB‐231Br cell adhesion, spreading, proliferation, and migration significantly increased with the hydrogel stiffness. We also demonstrated that the stiffness based responses of these cells were mediated, in part, through the focal adhesion kinase‐phosphoinositide‐3 kinase pathway. This biomimetic material system with tunable stiffness provides an ideal platform to further the understanding of mechanoregulation associated with brain metastatic breast cancer cells. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1832–1841, 2018.

     
    more » « less