skip to main content

Title: A TILLING by sequencing approach to identify induced mutations in sunflower genes
Abstract

The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource.

Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1759942
Publication Date:
NSF-PAR ID:
10227129
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BACKGROUND

    Despite widespread interest in next-generation sequencing (NGS), the adoption of personalized clinical genomics and mutation profiling of cancer specimens is lagging, in part because of technical limitations. Tumors are genetically heterogeneous and often contain normal/stromal cells, features that lead to low-abundance somatic mutations that generate ambiguous results or reside below NGS detection limits, thus hindering the clinical sensitivity/specificity standards of mutation calling. We applied COLD-PCR (coamplification at lower denaturation temperature PCR), a PCR methodology that selectively enriches variants, to improve the detection of unknown mutations before NGS-based amplicon resequencing.

    METHODS

    We used both COLD-PCR and conventional PCR (for comparison) to amplify serially diluted mutation-containing cell-line DNA diluted into wild-type DNA, as well as DNA from lung adenocarcinoma and colorectal cancer samples. After amplification of TP53 (tumor protein p53), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), IDH1 [isocitrate dehydrogenase 1 (NADP+), soluble], and EGFR (epidermal growth factor receptor) gene regions, PCR products were pooled for library preparation, bar-coded, and sequenced on the Illumina HiSeq 2000.

    RESULTS

    In agreement with recent findings, sequencing errors by conventional targeted-amplicon approaches dictated a mutation-detection limit of approximately 1%–2%. Conversely, COLD-PCR amplicons enriched mutations above the error-related noise, enabling reliable identification of mutation abundances of approximatelymore »0.04%. Sequencing depth was not a large factor in the identification of COLD-PCR–enriched mutations. For the clinical samples, several missense mutations were not called with conventional amplicons, yet they were clearly detectable with COLD-PCR amplicons. Tumor heterogeneity for the TP53 gene was apparent.

    CONCLUSIONS

    As cancer care shifts toward personalized intervention based on each patient's unique genetic abnormalities and tumor genome, we anticipate that COLD-PCR combined with NGS will elucidate the role of mutations in tumor progression, enabling NGS-based analysis of diverse clinical specimens within clinical practice.

    « less
  2. Abstract Background

    Crop improvement through cross-population genomic prediction and genome editing requires identification of causal variants at high resolution, within fewer than hundreds of base pairs. Most genetic mapping studies have generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects at high resolution, but they are limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Here we use genomic annotations to accurately predict nucleotide conservation across angiosperms, as a proxy for fitness effect of mutations.

    Results

    Using only sequence analysis, we annotate nonsynonymous mutations in 25,824 maize gene models, with information from bioinformatics and deep learning. Our predictions are validated by experimental information: within-species conservation, chromatin accessibility, and gene expression. According to gene ontology and pathway enrichment analyses, predicted nucleotide conservation points to genes in central carbon metabolism. Importantly, it improves genomic prediction for fitness-related traits such as grain yield, in elite maize panels, by stringent prioritization of fewer than 1% of single-site variants.

    Conclusions

    Our results suggest that predicting nucleotide conservation across angiosperms may effectively prioritize sites most likely to impact fitness-related traits in crops, without being limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Our approach—Prediction of mutation Impact by Calibratedmore »Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for accurate genomic prediction, and candidate mutations for efficient base editing. The trained PICNC models and predicted nucleotide conservation at protein-coding SNPs in maize are publicly available in CyVerse (https://doi.org/10.25739/hybz-2957).

    « less
  3. Abstract Background

    The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species’ exceptionally long life span.

    Findings

    We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing–assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identifiedmore »the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored.

    Conclusions

    We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.

    « less
  4. Mostafa, Heba H. (Ed.)
    ABSTRACT SARS-CoV-2 variants of concern (VOCs) continue to pose a public health threat which necessitates a real-time monitoring strategy to complement whole genome sequencing. Thus, we investigated the efficacy of competitive probe RT-qPCR assays for six mutation sites identified in SARS-CoV-2 VOCs and, after validating the assays with synthetic RNA, performed these assays on positive saliva samples. When compared with whole genome sequence results, the SΔ69-70 and ORF1aΔ3675-3677 assays demonstrated 93.60 and 68.00% accuracy, respectively. The SNP assays (K417T, E484K, E484Q, L452R) demonstrated 99.20, 96.40, 99.60, and 96.80% accuracies, respectively. Lastly, we screened 345 positive saliva samples from 7 to 22 December 2021 using Omicron-specific mutation assays and were able to quickly identify rapid spread of Omicron in Upstate South Carolina. Our workflow demonstrates a novel approach for low-cost, real-time population screening of VOCs. IMPORTANCE SARS-CoV-2 variants of concern and their many sublineages can be characterized by mutations present within their genetic sequences. These mutations can provide selective advantages such as increased transmissibility and antibody evasion, which influences public health recommendations such as mask mandates, quarantine requirements, and treatment regimens. Our RT-qPCR workflow allows for strain identification of SARS-CoV-2 positive saliva samples by targeting common mutation sites shared between variantsmore »of concern and detecting single nucleotides present at the targeted location. This differential diagnostic system can quickly and effectively identify a wide array of SARS-CoV-2 strains, which can provide more informed public health surveillance strategies in the future.« less
  5. Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres ( Ptt ) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M 2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F 2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F 1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F 2 individuals, representing 68 recombinant gametes, were genotypedmore »via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.« less