Abstract The recent realization of ferroelectricity in scandium‐ and boron‐substituted AlN thin films has spurred tremendous research interests. Here we established a molecular dynamics simulation framework to model the ferroelectricity of AlN thin films. Through reparameterization of Vashishta potential for AlN, the coercive field strength and the AlN polarization were found to be close to experimental values. Furthermore, we examined the effects of film thickness, temperature, in‐plane strain on polarization‐electric field hysteresis loop, and the thickness‐dependent Curie temperature. Lastly, we incorporated electrodes towards atomic‐level modeling of ferroelectric device, by considering the induced charge at the interface between electrodes and ferroelectric film. We found that low dielectric contrast significantly lowers the coercive field for switching AlN.
more »
« less
To switch or not to switch – a machine learning approach for ferroelectricity
With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis.
more »
« less
- Award ID(s):
- 1708615
- PAR ID:
- 10227259
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 2
- Issue:
- 5
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 2063 to 2072
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.more » « less
-
null (Ed.)A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively.more » « less
-
Abstract Ferroelectric materials exhibit spontaneous polarization that can be switched by electric field. Beyond traditional applications as nonvolatile capacitive elements, the interplay between polarization and electronic transport in ferroelectric thin films has enabled a path to neuromorphic device applications involving resistive switching. A fundamental challenge, however, is that finite electronic conductivity may introduce considerable power dissipation and perhaps destabilize ferroelectricity itself. Here, tunable microwave frequency electronic response of domain walls injected into ferroelectric lead zirconate titanate (PbZr0.2Ti0.8O3) on the level of a single nanodomain is revealed. Tunable microwave response is detected through first‐order reversal curve spectroscopy combined with scanning microwave impedance microscopy measurements taken near 3 GHz. Contributions of film interfaces to the measured AC conduction through subtractive milling, where the film exhibited improved conduction properties after removal of surface layers, are investigated. Using statistical analysis and finite element modeling, we inferred that the mechanism of tunable microwave conductance is the variable area of the domain wall in the switching volume. These observations open the possibilities for ferroelectric memristors or volatile resistive switches, localized to several tens of nanometers and operating according to well‐defined dynamics under an applied field.more » « less
-
Ferroelectric materials such as barium titanate (BaTiO3) have a wide range of applications in nano scale electronic devices due to their outstanding properties. In this study, we developed an easily extendable atomistic ReaxFF reactive force field for BaTiO3 that can capture both its field- as well as temperature-induced ferroelectric hysteresis and corresponding changes due to surface chemistry and bulk defects. Using our force field, we were able to reproduce and explain a number of experimental observations: (1) existence of a critical thickness of 4.8 nm below which ferroelectricity vanishes in BaTiO3; (2) migration and clustering of oxygen vacancies (OVs) in BaTiO3 and reduction in the polarization and the curie temperature due to the OVs; (3) domain wall interaction with surface chemistry to influence ferroelectric switching and polarization magnitude. This new computational tool opens up a wide range of possibilities for making predictions for realistic ferroelectric interfaces in energy-conversion, electronic and neuromorphic systems.more » « less
An official website of the United States government

