skip to main content


Title: Evaluation of Non-Uniform Sampling 2D 1H–13C HSQC Spectra for Semi-Quantitative Metabolomics
Metabolomics is the comprehensive study of metabolism, the biochemical processes that sustain life. By comparing metabolites between healthy and disease states, new insights into disease mechanisms can be uncovered. NMR is a powerful analytical method to detect and quantify metabolites. Standard one-dimensional (1D) 1H-NMR metabolite profiling is informative but challenged by significant chemical shift overlap. Multi-dimensional NMR can increase resolution, but the required long acquisition times lead to limited throughput. Non-uniform sampling (NUS) is a well-accepted mode of acquiring multi-dimensional NMR data, enabling either reduced acquisition times or increased sensitivity in equivalent time. Despite these advantages, the technique is not widely applied to metabolomics. In this study, we evaluated the utility of NUS 1H–13C heteronuclear single quantum coherence (HSQC) for semi-quantitative metabolomics. We demonstrated that NUS improved sensitivity compared to uniform sampling (US). We verified that the NUS measurement maintains linearity, making it possible to detect metabolite changes across samples and studies. Furthermore, we calculated the lower limit of detection and quantification (LOD/LOQ) of common metabolites. Finally, we demonstrate that the measurements are repeatable on the same system and across different systems. In conclusion, our results detail the analytical capability of NUS and, in doing so, empower the future use of NUS 1H–13C HSQC in metabolomic studies.  more » « less
Award ID(s):
1660921
NSF-PAR ID:
10227337
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Metabolites
Volume:
10
Issue:
5
ISSN:
2218-1989
Page Range / eLocation ID:
203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensitivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of metabolites with a lower limit of detection and quantification in the low micromolar range. We also observed an increase in the repeatability of intensity measurements upon the addition of gadolinium. The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite samples can improve NMR-based metabolomics. 
    more » « less
  2. Lee, YJ (Ed.)
    The ability to study and visualize metabolites on a cellular and sub-cellular level is important for gaining insights into biological pathways and metabolism of multicellular organisms. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool for metabolomics experiments due to its high sensitivity and small sampling size. The spatial resolution in MALDI-MSI is mainly limited by the number of molecules available in a small sampling size. When the sampling size is low enough to achieve cellular or subcellular spatial resolution, signal intensity is sacrificed making poorly ionized metabolites difficult to detect. To overcome this limitation, on-tissue chemical derivatization reactions have been used to enhance the desorption/ionization efficiency of selected classes of compounds by adding a functional group with a permanent positive charge or one that can be easily ionized. By utilizing several chemical derivatizations in parallel, metabolite coverage can be drastically improved. This chapter outlines methodology for sample preparation and data analysis for on-tissue chemical derivatization using various derivatization reagents. 
    more » « less
  3. Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment. 
    more » « less
  4. null (Ed.)
    Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative analytical tool commonly utilized for metabolomics analysis. Quantitative NMR (qNMR) is a field of NMR spectroscopy dedicated to the measurement of analytes through signal intensity and its linear relationship with analyte concentration. Metabolomics-based NMR exploits this quantitative relationship to identify and measure biomarkers within complex biological samples such as serum, plasma, and urine. In this review of quantitative NMR-based metabolomics, the advancements and limitations of current techniques for metabolite quantification will be evaluated as well as the applications of qNMR in biomedical metabolomics. While qNMR is limited by sensitivity and dynamic range, the simple method development, minimal sample derivatization, and the simultaneous qualitative and quantitative information provide a unique landscape for biomedical metabolomics, which is not available to other techniques. Furthermore, the non-destructive nature of NMR-based metabolomics allows for multidimensional analysis of biomarkers that facilitates unambiguous assignment and quantification of metabolites in complex biofluids. 
    more » « less
  5. Metabolomics aims to achieve a global quantitation of the pool of metabolites within a biological system. Importantly, metabolite concentrations serve as a sensitive marker of both genomic and phenotypic changes in response to both internal and external stimuli. NMR spectroscopy greatly aids in the understanding of both in vitro and in vivo physiological systems and in the identification of diagnostic and therapeutic biomarkers. Accordingly, NMR is widely utilized in metabolomics and fluxomics studies due to its limited requirements for sample preparation and chromatography, its non‐destructive and quantitative nature, its utility in the structural elucidation of unknown compounds, and, importantly, its versatility in the analysis of in vitro, in vivo, and ex vivo samples. This review provides an overview of the strengths and limitations of in vitro and in vivo experiments for translational research and discusses how ex vivo studies may overcome these weaknesses to facilitate the extrapolation of in vitro insights to an in vivo system. The application of NMR‐based metabolomics to ex vivo samples, tissues, and biofluids can provide essential information that is close to a living system (in vivo) with sensitivity and resolution comparable to those of in vitro studies. The success of this extrapolation process is critically dependent on high‐quality and reproducible data. Thus, the incorporation of robust quality assurance and quality control checks into the experimental design and execution of NMR‐based metabolomics experiments will ensure the successful extrapolation of ex vivo studies to benefit translational medicine.

     
    more » « less