skip to main content


Title: FlashRoute: Efficient Traceroute on a Massive Scale
We propose a new traceroute tool, FlashRoute for efficient large-scale topology discovery. FlashRoute reduces the time required for tracerouting the entire /24 IPv4 address space by a factor of three and half compared to previous state of the art. Additionally, we present a new technique to measure hop-distance to a destination using a single probe and uncover a bias of the influential ISI Census hitlist [18] in topology discovery.  more » « less
Award ID(s):
1647145
NSF-PAR ID:
10227490
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM Internet Measurement Conference
Page Range / eLocation ID:
443 to 455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical K-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer framework yields a quantitative definition of topologically non-trivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time-evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials 
    more » « less
  2. null (Ed.)
    Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. 
    more » « less
  3. Pupko, Tal (Ed.)
    Abstract Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with LBA artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale datasets. Pseudoscorpion placement is particularly variable across datasets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount LBA, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones. 
    more » « less
  4. Metals, semiconductors, metamaterials, and various two-dimensional materials with plasmonic dispersion exhibit numerous exotic physical effects in the presence of an external bias, for example an external static magnetic field or electric current. These physical phenomena range from Faraday rotation of light propagating in the bulk to strong confinement and directionality of guided modes on the surface and are a consequence of the breaking of Lorentz reciprocity in these systems. The recent introduction of relevant concepts of topological physics, translated from condensed-matter systems to photonics, has not only given a new perspective on some of these topics by relating certain bulk properties of plasmonic media to the surface phenomena, but has also led to the discovery of new regimes of truly unidirectional, backscattering-immune, surface-wave propagation. In this article, we briefly review the concepts of nonreciprocity and topology and describe their manifestation in plasmonic materials. Furthermore, we use these concepts to classify and discuss the different classes of guided surface modes existing on the interfaces of various plasmonic systems. 
    more » « less
  5. Abstract

    IMes (IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene) and IPr (IPr=1,3‐ bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) represent by far the most frequently used N‐heterocyclic carbene ligands in homogeneous catalysis, however, despite numerous advantages, these ligands are limited by the lack of steric flexibility of catalytic pockets. We report a new class of unique unsymmetrical N‐heterocyclic carbene ligands that are characterized by freely‐rotatable N‐aromatic wingtips in the imidazol‐2‐ylidene architecture. The combination of rotatable N−CH2Ar bond with conformationally‐fixed N−Ar linkage results in a highly modular ligand topology, entering the range of geometries inaccessible to IMes and IPr. These ligands are highly reactive in Cu(I)‐catalyzed β‐hydroboration, an archetypal borylcupration process that has had a transformative impact on the synthesis of boron‐containing compounds. The most reactive Cu(I)‐NHC in this class has been commercialized in collaboration with MilliporeSigma to enable broad access of the synthetic chemistry community. The ligands gradually cover %Vburgeometries ranging from 37.3 % to 52.7 %, with the latter representing the largest %Vburdescribed for an IPr analogue, while retaining full flexibility of N‐wingtip. Considering the modular access to novel geometrical space in N‐heterocyclic carbene catalysis, we anticipate that this concept will enable new opportunities in organic synthesis, drug discovery and stabilization of reactive metal centers.

     
    more » « less