skip to main content


Title: Spectroscopy of a tunable moiré system with a correlated and topological flat band
Abstract

Moiré superlattices created by the twisted stacking of two-dimensional crystals can host electronic bands with flat energy dispersion in which enhanced interactions promote correlated electron states. The twisted double bilayer graphene (TDBG), where two Bernal bilayer graphene are stacked with a twist angle, is such a moiré system with tunable flat bands. Here, we use gate-tuned scanning tunneling spectroscopy to directly demonstrate the tunability of the band structure of TDBG with an electric field and to show spectroscopic signatures of electronic correlations and topology for its flat band. Our spectroscopic experiments are in agreement with a continuum model of TDBG band structure and reveal signatures of a correlated insulator gap at partial filling of its isolated flat band. The topological properties of this flat band are probed with the application of a magnetic field, which leads to valley polarization and the splitting of Chern bands with a large effective g-factor.

 
more » « less
Award ID(s):
2011750 1904442 1420541
NSF-PAR ID:
10227680
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Moiré superlattices engineer band properties and enable observation of fractal energy spectra of Hofstadter butterfly. Recently, correlated-electron physics hosted by flat bands in small-angle moiré systems has been at the foreground. However, the implications of moiré band topology within the single-particle framework are little explored experimentally. An outstanding problem is understanding the effect of band topology on Hofstadter physics, which does not require electron correlations. Our work experimentally studies Chern state switching in the Hofstadter regime using twisted double bilayer graphene (TDBG), which offers electric field tunable topological bands, unlike twisted bilayer graphene. Here we show that the nontrivial topology reflects in the Hofstadter spectra, in particular, by displaying a cascade of Hofstadter gaps that switch their Chern numbers sequentially while varying the perpendicular electric field. Our experiments together with theoretical calculations suggest a crucial role of charge polarization changing concomitantly with topological transitions in this system. Layer polarization is likely to play an important role in the topological states in few-layer twisted systems. Moreover, our work establishes TDBG as a novel Hofstadter platform with nontrivial magnetoelectric coupling. 
    more » « less
  2. Abstract

    In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer–bilayer graphene. Through gate- and magnetic field-dependent measurements, we observe local spectroscopic signatures indicating a quantum anomalous Hall insulating state with a total Chern number of ±2 at a doping level of three electrons per moiré unit cell. We show that the sign of the Chern number and associated magnetism can be electrostatically switched only over a limited range of twist angle and sample hetero-strain values. This results from a competition between the orbital magnetization of filled bulk bands and chiral edge states, which is sensitive to strain-induced distortions in the moiré superlattice.

     
    more » « less
  3. Fermi nesting

    Correlated states have been shown to emerge in bilayer and trilayer graphene with the two-dimensional layers at just the right angle with respect to each other. Key to the enhanced importance of interactions are the so-called moiré electronic bands that form in such systems. Rickhauset al. explored a related system of two graphene bilayers twisted with respect to each other. The twist angle was set so that the layer coupling was strong enough to form moiré bands but weak enough for the carrier concentration in the top and bottom bilayer to be controlled separately. Doping the top bilayer with electrons and the bottom bilayer with holes, the researchers created a correlated state with nested Fermi surfaces. —JS

     
    more » « less
  4. Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene. 
    more » « less
  5. Collective excitations contain key information regarding the electronic order of the ground state of strongly correlated systems. Various collective modes in the spin and valley isospin channels of magic-angle graphene moiré bands have been alluded to by a series of recent experiments. However, a direct observation of collective excitations has been impossible due to the lack of a spin probe. Here we observe low-energy collective excitations in twisted bilayer graphene near the magic angle, using a resistively detected electron spin resonance technique. Two independent observations show that the generation and detection of microwave resonance relies on the strong correlations within the flat moiré energy band. First, the onset of the resonance response coincides with the spontaneous flavour polarization at moiré half-filling, but is absent in the isospin unpolarized density range. Second, we perform the same measurement on various systems that do not have flat bands and observe no indication of a resonance response in these samples. Our explanation is that the resonance response near the magic angle originates from Dirac revivals and the resulting isospin order. 
    more » « less