- Award ID(s):
- 1757207
- PAR ID:
- 10227840
- Date Published:
- Journal Name:
- GLOBECOM 2020 - 2020 IEEE Global Communications Conference
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low-density parity-check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to un-doped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process. In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performance.more » « less
-
null (Ed.)In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low density parity check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to undoped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process.In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performancemore » « less
-
We propose a novel variant of the gradient descent bit-flipping (GDBF) algorithm for decoding low-density parity-check (LDPC) codes over the binary symmetric channel. The new bit-flipping rule is based on the reliability information passed from neighboring nodes in the corresponding Tanner graph. The name SuspicionDistillation reflects the main feature of the algorithm—that in every iteration, we assign a level of suspicion to each variable node about its current bit value. The level of suspicion of a variable node is used to decide whether the corresponding bit will be flipped. In addition, in each iteration, we determine the number of satisfied and unsatisfied checks that connect a suspicious node with other suspicious variable nodes. In this way, in the course of iteration, we “distill” such suspicious bits and flip them. The deterministic nature of the proposed algorithm results in a low-complexity implementation, as the bit-flipping rule can be obtained by modifying the original GDBF rule by using basic logic gates, and the modification is not applied in all decoding iterations. Furthermore, we present a more general framework based on deterministic re-initialization of the decoder input. The performance of the resulting algorithm is analyzed for the codes with various code lengths, and significant performance improvements are observed compared to the state-of-the-art hard-decision-decoding algorithms.more » « less
-
It is well known that for decoding low-density parity-check (LDPC) codes, the attenuated min-sum algorithm (AMSA) and the offset min-sum algorithm (OMSA) can outperform the conventional min-sum algorithm (MSA) at low signal-to-noise-ratios (SNRs). In this paper, we demonstrate that, for quantized LDPC decoders, although the MSA achieves better high SNR performance than the AMSA and OMSA, each of the MSA, AMSA, and OMSA all suffer from a relatively high error floor. Therefore, we propose a novel modification of the MSA for decoding quantized LDPC codes with the aim of lowering the error floor. Compared to the quantized MSA, the proposed modification is also helpful at low SNRs, where it matches the waterfall performance of the quantized AMSA and OMSA. The new algorithm is designed based on the assumption that trapping/absorbing sets (or other problematic graphical objects) are the major cause of the error floor for quantized LDPC decoders, and it aims to reduce the probability that these problematic objects lead to decoding errors.more » « less
-
Abstract Quantum Tanner codes constitute a family of quantum low-density parity-check codes with good parameters, i.e., constant encoding rate and relative distance. In this article, we prove that quantum Tanner codes also facilitate single-shot quantum error correction (QEC) of adversarial noise, where one measurement round (consisting of constant-weight parity checks) suffices to perform reliable QEC even in the presence of measurement errors. We establish this result for both the sequential and parallel decoding algorithms introduced by Leverrier and Zémor. Furthermore, we show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round. Combined with good code parameters, the resulting constant-time overhead of QEC and robustness to (possibly time-correlated) adversarial noise make quantum Tanner codes alluring from the perspective of quantum fault-tolerant protocols.