skip to main content


Title: A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification
Transfer learning using pre-trained deep neural networks (DNNs) has been widely used for plant disease identification recently. However, pre-trained DNNs are susceptible to adversarial attacks which generate adversarial samples causing DNN models to make wrong predictions. Successful adversarial attacks on deep learning (DL)-based plant disease identification systems could result in a significant delay of treatments and huge economic losses. This paper is the first attempt to study adversarial attacks and detection on DL-based plant disease identification. Our results show that adversarial attacks with a small number of perturbations can dramatically degrade the performance of DNN models for plant disease identification. We also find that adversarial attacks can be effectively defended by using adversarial sample detection with an appropriate choice of features. Our work will serve as a basis for developing more robust DNN models for plant disease identification and guiding the defense against adversarial attacks.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10227859
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
11
Issue:
4
ISSN:
2076-3417
Page Range / eLocation ID:
1878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Improving the accuracy and robustness of deep neural nets (DNNs) and adapting them to small training data are primary tasks in deep learning (DL) research. In this paper, we replace the output activation function of DNNs, typically the data-agnostic softmax function, with a graph Laplacian-based high-dimensional interpolating function which, in the continuum limit, converges to the solution of a Laplace–Beltrami equation on a high-dimensional manifold. Furthermore, we propose end-to-end training and testing algorithms for this new architecture. The proposed DNN with graph interpolating activation integrates the advantages of both deep learning and manifold learning. Compared to the conventional DNNs with the softmax function as output activation, the new framework demonstrates the following major advantages: First, it is better applicable to data-efficient learning in which we train high capacity DNNs without using a large number of training data. Second, it remarkably improves both natural accuracy on the clean images and robust accuracy on the adversarial images crafted by both white-box and black-box adversarial attacks. Third, it is a natural choice for semi-supervised learning. This paper is a significant extension of our earlier work published in NeurIPS, 2018. For reproducibility, the code is available at https://github.com/BaoWangMath/DNN-DataDependentActivation . 
    more » « less
  2. The integration of DNN-contextualized binary-pattern-driven non-parametric cost volume and DNN cost aggregation leads to more robust and more generalizable stereo matching. Abstract: Stereo matching is a classic challenging problem in computer vision, which has recently witnessed remarkable progress by Deep Neural Networks (DNNs). This paradigm shift leads to two interesting and entangled questions that have not been addressed well. First, it is unclear whether stereo matching DNNs that are trained from scratch really learn to perform matching well. This paper studies this problem from the lens of white-box adversarial attacks. It presents a method of learning stereo-constrained photometrically-consistent attacks, which by design are weaker adversarial attacks, and yet can cause catastrophic performance drop for those DNNs. This observation suggests that they may not actually learn to perform matching well in the sense that they should otherwise achieve potentially even better after stereo-constrained perturbations are introduced. Second, stereo matching DNNs are typically trained under the simulation-to-real (Sim2Real) pipeline due to the data hungriness of DNNs. Thus, alleviating the impacts of the Sim2Real photometric gap in stereo matching DNNs becomes a pressing need. Towards joint adversarially robust and domain generalizable stereo matching, this paper proposes to learn DNN-contextualized binary-pattern-driven non-parametric cost-volumes. It leverages the perspective of learning the cost aggregation via DNNs, and presents a simple yet expressive design that is fully end-to-end trainable, without resorting to specific aggregation inductive biases. In experiments, the proposed method is tested in the SceneFlow dataset, the KITTI2015 dataset, and the Middlebury dataset. It significantly improves the adversarial robustness, while retaining accuracy performance comparable to state-of-the-art methods. It also shows a better Sim2Real generalizability. Our code and pretrained models are released at \href{https://github.com/kelkelcheng/AdversariallyRobustStereo}{this Github Repo}. 
    more » « less
  3. Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets and is typically unknown due to the lack of ground truth labels. This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications. In this paper, we address trustworthiness of DNNs by using post-hoc processing to monitor the true inference accuracy on a user’s dataset. Concretely, we propose a neural network-based accuracy monitor model, which only takes the deployed DNN’s softmax probability output as its input and directly predicts if the DNN’s prediction result is correct or not, thus leading to an estimate of the true inference accuracy. The accuracy monitor model can be pre-trained on a dataset relevant to the target application of interest, and only needs to actively label a small portion (1% in our experiments) of the user’s dataset for model transfer. For estimation robustness, we further employ an ensemble of monitor models based on the Monte-Carlo dropout method. We evaluate our approach on different deployed DNN models for image classification and traffic sign detection over multiple datasets (including adversarial samples). The result shows that our accuracy monitor model provides a close-to-true accuracy estimation and outperforms the existing baseline methods. 
    more » « less
  4. Despite their tremendous success in a range of domains, deep learning systems are inherently susceptible to two types of manipulations: adversarial inputs -- maliciously crafted samples that deceive target deep neural network (DNN) models, and poisoned models -- adversely forged DNNs that misbehave on pre-defined inputs. While prior work has intensively studied the two attack vectors in parallel, there is still a lack of understanding about their fundamental connections: what are the dynamic interactions between the two attack vectors? what are the implications of such interactions for optimizing existing attacks? what are the potential countermeasures against the enhanced attacks? Answering these key questions is crucial for assessing and mitigating the holistic vulnerabilities of DNNs deployed in realistic settings. Here we take a solid step towards this goal by conducting the first systematic study of the two attack vectors within a unified framework. Specifically, (i) we develop a new attack model that jointly optimizes adversarial inputs and poisoned models; (ii) with both analytical and empirical evidence, we reveal that there exist intriguing "mutual reinforcement" effects between the two attack vectors -- leveraging one vector significantly amplifies the effectiveness of the other; (iii) we demonstrate that such effects enable a large design spectrum for the adversary to enhance the existing attacks that exploit both vectors (e.g., backdoor attacks), such as maximizing the attack evasiveness with respect to various detection methods; (iv) finally, we discuss potential countermeasures against such optimized attacks and their technical challenges, pointing to several promising research directions. 
    more » « less
  5. null (Ed.)
    Security of machine learning is increasingly becoming a major concern due to the ubiquitous deployment of deep learning in many security-sensitive domains. Many prior studies have shown external attacks such as adversarial examples that tamper the integrity of DNNs using maliciously crafted inputs. However, the security implication of internal threats (i.e., hardware vulnerabilities) to DNN models has not yet been well understood. In this paper, we demonstrate the first hardware-based attack on quantized deep neural networks–DeepHammer–that deterministically induces bit flips in model weights to compromise DNN inference by exploiting the rowhammer vulnerability. DeepHammer performs an aggressive bit search in the DNN model to identify the most vulnerable weight bits that are flippable under system constraints. To trigger deterministic bit flips across multiple pages within a reasonable amount of time, we develop novel system-level techniques that enable fast deployment of victim pages, memory-efficient rowhammering and precise flipping of targeted bits. DeepHammer can deliberately degrade the inference accuracy of the victim DNN system to a level that is only as good as random guess, thus completely depleting the intelligence of targeted DNN systems. We systematically demonstrate our attacks on real systems against 11 DNN architectures with 4 datasets corresponding to different application domains. Our evaluation shows that DeepHammer is able to successfully tamper DNN inference behavior at run-time within a few minutes. We further discuss several mitigation techniques from both algorithm and system levels to protect DNNs against such attacks. Our work highlights the need to incorporate security mechanisms in future deep learning systems to enhance the robustness against hardware-based deterministic fault injections. 
    more » « less