skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performative Prediction
When predictions support decisions they may influence the outcome they aim to predict. We call such predictions performative; the prediction influences the target. Performativity is a well-studied phenomenon in policy-making that has so far been neglected in supervised learning. When ignored, performativity surfaces as undesirable distribution shift, routinely addressed with retraining. We develop a risk minimization framework for performative prediction bringing together concepts from statistics, game theory, and causality. A conceptual novelty is an equilibrium notion we call performative stability. Performative stability implies that the predictions are calibrated not against past outcomes, but against the future outcomes that manifest from acting on the prediction. Our main results are necessary and sufficient conditions for the convergence of retraining to a performatively stable point of nearly minimal loss. In full generality, performative prediction strictly subsumes the setting known as strategic classification. We thus also give the first sufficient conditions for retraining to overcome strategic feedback effects.  more » « less
Award ID(s):
1750555
PAR ID:
10228086
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning (PMLR)
Page Range / eLocation ID:
7599-7609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In performative prediction, the choice of a model influences the distribution of future data, typically through actions taken based on the model's predictions. We initiate the study of stochastic optimization for performative prediction. What sets this setting apart from traditional stochastic optimization is the difference between merely updating model parameters and deploying the new model. The latter triggers a shift in the distribution that affects future data, while the former keeps the distribution as is. Assuming smoothness and strong convexity, we prove rates of convergence for both greedily deploying models after each stochastic update (greedy deploy) as well as for taking several updates before redeploying (lazy deploy). In both cases, our bounds smoothly recover the optimal O(1/k) rate as the strength of performativity decreases. Furthermore, they illustrate how depending on the strength of performative effects, there exists a regime where either approach outperforms the other. We experimentally explore the trade-off on both synthetic data and a strategic classification simulator. 
    more » « less
  2. Abstract A growing body of literature argues that digital models do not just help organizational leaders to predict the future. Models can inadvertently produce the very future they purport to describe. In this view,performativityis a side-effect of digital modeling. But digital twins turn such thinking on its head. Digital twins are digital models that are designed to be performative—changes in the model are supposed to produce corresponding changes in the world the model represents. This is what makes digital twins useful. But for decision-makers to act in ways that align the world outside the model with the predictions contained within, they must first believe that the model is a faithful representation. In other words, for a digital twin to become performative, it must first be taken-for-granted as “real”. In this paper, we explore the technological and organizational characteristics that are likely to shape the level of taken-for-grantedness of a digital twin. 
    more » « less
  3. Learning problems commonly exhibit an interesting feedback mechanism wherein the population data reacts to competing decision makers’ actions. This paper formulates a new game theoretic framework for this phenomenon, called multi-player performative prediction. We focus on two distinct solution concepts, namely (i) performatively stable equilibria and (ii) Nash equilibria of the game. The latter equilibria are arguably more informative, but are generally computationally difficult to find since they are solutions of nonmonotone games. We show that under mild assumptions, the performatively stable equilibria can be found efficiently by a variety of algorithms, including repeated retraining and the repeated (stochastic) gradient method. We then establish transparent sufficient conditions for strong monotonicity of the game and use them to develop algorithms for finding Nash equilibria. We investigate derivative free methods and adaptive gradient algorithms wherein each player alternates between learning a parametric description of their distribution and gradient steps on the empirical risk. Synthetic and semi-synthetic numerical experiments illustrate the results. 
    more » « less
  4. We consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes. In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications. 
    more » « less
  5. We consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes.In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications. 
    more » « less