skip to main content

Title: Extreme oxidant amounts produced by lightning in storm clouds

Lightning increases the atmosphere’s ability to cleanse itself by producing nitric oxide (NO), leading to atmospheric chemistry that forms ozone (O3) and the atmosphere’s primary oxidant, the hydroxyl radical (OH). Our analysis of a 2012 airborne study of deep convection and chemistry demonstrates that lightning also directly generates the oxidants OH and the hydroperoxyl radical (HO2). Extreme amounts of OH and HO2were discovered and linked to visible flashes occurring in front of the aircraft and to subvisible discharges in electrified anvil regions. This enhanced OH and HO2is orders of magnitude greater than any previous atmospheric observation. Lightning-generated OH in all storms happening at the same time globally can be responsible for a highly uncertain, but substantial, 2 to 16% of global atmospheric OH oxidation.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
p. 711-715
American Association for the Advancement of Science (AAAS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Oxidation flow reactors (OFRs) are a promising complement toenvironmental chambers for investigating atmospheric oxidation processes andsecondary aerosol formation. However, questions have been raised about howrepresentative the chemistry within OFRs is of that in the troposphere. Weinvestigate the fates of organic peroxy radicals (RO2), which playa central role in atmospheric organic chemistry, in OFRs and environmentalchambers by chemical kinetic modeling and compare to a variety of ambientconditions to help define a range of atmospherically relevant OFR operatingconditions. For most types of RO2, their bimolecular fates in OFRsare mainly RO2+HO2 and RO2+NO, similar to chambers andatmospheric studies.more »For substituted primary RO2 and acylRO2, RO2+RO2 can make a significant contribution tothe fate of RO2 in OFRs, chambers and the atmosphere, butRO2+RO2 in OFRs is in general somewhat less important than inthe atmosphere. At high NO, RO2+NO dominates RO2 fate inOFRs, as in the atmosphere. At a high UV lamp setting in OFRs,RO2+OH can be a major RO2 fate and RO2isomerization can be negligible for common multifunctional RO2,both of which deviate from common atmospheric conditions. In the OFR254operation mode (for which OH is generated only from the photolysis of addedO3), we cannot identify any conditions that can simultaneouslyavoid significant organic photolysis at 254 nm and lead to RO2lifetimes long enough (∼ 10 s) to allow atmospherically relevantRO2 isomerization. In the OFR185 mode (for which OH is generatedfrom reactions initiated by 185 nm photons), high relative humidity, low UVintensity and low precursor concentrations are recommended for theatmospherically relevant gas-phase chemistry of both stable species andRO2. These conditions ensure minor or negligible RO2+OHand a relative importance of RO2 isomerization in RO2fate in OFRs within ×2 of that in the atmosphere. Under theseconditions, the photochemical age within OFR185 systems can reach a fewequivalent days at most, encompassing the typical ages for maximum secondaryorganic aerosol (SOA) production. A small increase in OFR temperature mayallow the relative importance of RO2 isomerization to approach theambient values. To study the heterogeneous oxidation of SOA formed underatmospherically relevant OFR conditions, a different UV source with higherintensity is needed after the SOA formation stage, which can be done withanother reactor in series. Finally, we recommend evaluating the atmosphericrelevance of RO2 chemistry by always reporting measured and/orestimated OH, HO2, NO, NO2 and OH reactivity (or at leastprecursor composition and concentration) in all chamber and flow reactorexperiments. An easy-to-use RO2 fate estimator program is includedwith this paper to facilitate the investigation of this topic in futurestudies.

    « less
  2. Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant andmore »that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the  ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0+HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.

    « less
  3. Bio-derived isobutanol has been approved as a gasoline additive in the US, but our understanding of its combustion chemistry still has significant uncertainties. Detailed quantum calculations could improve model accuracy leading to better estimation of isobutanol's combustion properties and its environmental impacts. This work examines 47 molecules and 38 reactions involved in the first oxygen addition to isobutanol's three alkyl radicals located α, β, and γ to the hydroxide. Quantum calculations are mostly done at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/CBSB7, with 1-D hindered rotor corrections obtained at B3LYP/6-31G(d). The resulting potential energy surfaces are the most comprehensive isobutanol peroxy networks published to date. Canonicalmore »transition state theory and a 1-D microcanonical master equation are used to derive high-pressure-limit and pressure-dependent rate coefficients, respectively. At all conditions studied, the recombination of γ-isobutanol radical with O 2 forms HO 2 + isobutanal. The recombination of β-isobutanol radical with O 2 forms a stabilized hydroperoxy alkyl radical below 400 K, water + an alkoxy radical at higher temperatures, and HO 2 + an alkene above 1200 K. The recombination of β-isobutanol radical with O 2 results in a mixture of products between 700–1100 K, forming acetone + formaldehyde + OH at lower temperatures and forming HO 2 + alkenes at higher temperatures. The barrier heights, high-pressure-limit rates, and pressure-dependent kinetics generally agree with the results from previous quantum chemistry calculations. Six reaction rates in this work deviate by over three orders of magnitude from kinetics in detailed models of isobutanol combustion, suggesting the rates calculated here can help improve modeling of isobutanol combustion and its environmental fate.« less
  4. Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Uponmore »complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading.« less
  5. Chamber experiments showing “pure biogenic nucleation” have shown an important role for covalently bound organic association products (“dimers”). These form from peroxy-radical (RO 2 ) cross reactions. Chamber experiments at low-NO x conditions often have quite high hydrocarbon reactant concentrations and relatively low concentrations of oxygenated volatile organic compounds (OVOCs). This can skew the radical chemistry in chambers relative to the real atmosphere, favoring RO 2 and disfavoring HO 2 radicals. RO 2 cross reaction kinetics are in turn highly uncertain. Here we explore the implications of the RO 2 to HO 2 ratio in chamber experiments as well asmore »the implications of uncertain RO 2 cross reaction kinetics and the potential for added CO to mimic more atmospheric radical conditions. We treat a plausible range of RO 2 rate coefficients under both typical chamber conditions and atmospheric conditions to see how dimerization is affected by high concentrations of OVOCs, and thus lower RO 2  : HO 2 relative to smog chamber experiments. We find that if RO 2 reactions are fast, relatively high yields of low volatility dimers can participate in new particle formation. The results are highly sensitive to both the (uncertain) RO 2 kinetics as well as RO 2  : HO 2 , suggesting both that low-NO x chamber results should be extrapolated to the atmosphere with caution but also that the atmosphere itself may be highly sensitive to the specific (and rich) mixture of organic compounds and thus peroxy radicals.« less