skip to main content

Title: Extreme oxidant amounts produced by lightning in storm clouds

Lightning increases the atmosphere’s ability to cleanse itself by producing nitric oxide (NO), leading to atmospheric chemistry that forms ozone (O3) and the atmosphere’s primary oxidant, the hydroxyl radical (OH). Our analysis of a 2012 airborne study of deep convection and chemistry demonstrates that lightning also directly generates the oxidants OH and the hydroperoxyl radical (HO2). Extreme amounts of OH and HO2were discovered and linked to visible flashes occurring in front of the aircraft and to subvisible discharges in electrified anvil regions. This enhanced OH and HO2is orders of magnitude greater than any previous atmospheric observation. Lightning-generated OH in all storms happening at the same time globally can be responsible for a highly uncertain, but substantial, 2 to 16% of global atmospheric OH oxidation.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Page Range / eLocation ID:
p. 711-715
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reaction with the hydroxyl radical (OH) is often the first step in the removal of many atmospheric pollutants. The nitrogen oxides (NOx) generated by lightning can increase the amount of HOx(HOx = OH + HO2) present in the atmosphere, but direct HOxproduction from lightning has never been quantitatively investigated in the laboratory. In this laboratory study, prodigious amounts of HOxwere generated by both visible and subvisible electrical discharges over ranges of pressure and water vapor mixing ratios relevant to the troposphere. Also measured were NO, total nitrogen oxides (NOx), ozone (O3), and OH exposure, which is the integral of the hydroxyl radical concentration over time since the discharge. HOxand OH exposure were approximately independent of pressure from 360 to 970 hPa and increased only slightly as water vapor increased from 1,000 to 8,000 parts per million volume (ppmv), while NOxwas approximately independent of both pressure and water vapor over the same ranges. These laboratory measurements of excessive HOxand OH exposure are similar to measurements of electrically generated HOxdiscovered in electrified anvil clouds during a 2012 airborne study, thus demonstrating the relevance of these laboratory results to the atmosphere and the importance of understanding the electrically generated HOxcontribution to atmospheric oxidation.

    more » « less
  2. Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere’s primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is “Do other electrical discharges also generate large amounts of oxidants?” In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO 2 ), and ozone (O 3 ). Hundreds of parts per trillion to parts per billion of OH and HO 2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO 2 , and O 3 , with 14 times more O 3 generated than OH and HO 2 , which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10–100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators. 
    more » « less
  3. Abstract. Oxidation flow reactors (OFRs) are a promising complement toenvironmental chambers for investigating atmospheric oxidation processes andsecondary aerosol formation. However, questions have been raised about howrepresentative the chemistry within OFRs is of that in the troposphere. Weinvestigate the fates of organic peroxy radicals (RO2), which playa central role in atmospheric organic chemistry, in OFRs and environmentalchambers by chemical kinetic modeling and compare to a variety of ambientconditions to help define a range of atmospherically relevant OFR operatingconditions. For most types of RO2, their bimolecular fates in OFRsare mainly RO2+HO2 and RO2+NO, similar to chambers andatmospheric studies. For substituted primary RO2 and acylRO2, RO2+RO2 can make a significant contribution tothe fate of RO2 in OFRs, chambers and the atmosphere, butRO2+RO2 in OFRs is in general somewhat less important than inthe atmosphere. At high NO, RO2+NO dominates RO2 fate inOFRs, as in the atmosphere. At a high UV lamp setting in OFRs,RO2+OH can be a major RO2 fate and RO2isomerization can be negligible for common multifunctional RO2,both of which deviate from common atmospheric conditions. In the OFR254operation mode (for which OH is generated only from the photolysis of addedO3), we cannot identify any conditions that can simultaneouslyavoid significant organic photolysis at 254 nm and lead to RO2lifetimes long enough (∼ 10 s) to allow atmospherically relevantRO2 isomerization. In the OFR185 mode (for which OH is generatedfrom reactions initiated by 185 nm photons), high relative humidity, low UVintensity and low precursor concentrations are recommended for theatmospherically relevant gas-phase chemistry of both stable species andRO2. These conditions ensure minor or negligible RO2+OHand a relative importance of RO2 isomerization in RO2fate in OFRs within ×2 of that in the atmosphere. Under theseconditions, the photochemical age within OFR185 systems can reach a fewequivalent days at most, encompassing the typical ages for maximum secondaryorganic aerosol (SOA) production. A small increase in OFR temperature mayallow the relative importance of RO2 isomerization to approach theambient values. To study the heterogeneous oxidation of SOA formed underatmospherically relevant OFR conditions, a different UV source with higherintensity is needed after the SOA formation stage, which can be done withanother reactor in series. Finally, we recommend evaluating the atmosphericrelevance of RO2 chemistry by always reporting measured and/orestimated OH, HO2, NO, NO2 and OH reactivity (or at leastprecursor composition and concentration) in all chamber and flow reactorexperiments. An easy-to-use RO2 fate estimator program is includedwith this paper to facilitate the investigation of this topic in futurestudies.

    more » « less
  4. Abstract

    Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one‐dimensional atmospheric chemistry and transport model (PACT‐1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model Cl2and Br2primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a 2‐day case study from the 2009 Ocean‐Atmosphere‐Sea Ice‐Snowpack campaign at Utqiaġvik, Alaska. The model reproduces both the diurnal cycle and high quantity of Cl2observed, along with the measured concentrations of Br2, BrO, and HOBr. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is typically confined to the lowest 15 m of the atmosphere, while bromine can impact chemistry up to and above the surface inversion height. Upon including halogen emissions and recycling, the concentration of HOx(HOx = OH + HO2) at the surface increases by as much as a factor of 30 at mid‐day. The change in HOxdue to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound lifetimes within a shallow layer near the surface.

    more » « less
  5. Abstract

    Prodigious amounts of the hydroxyl radical (OH) are generated in the laboratory on tree leaves by corona discharges, which also occur on trees during thunderstorms. Production rates of OH and HO2depend on the applied electric field generating the corona discharge, leaf dryness, and the presence of liquid water on the leaf. However, they are independent of leaf type and corona discharge polarity for a given corona ultraviolet (UV) flux. Production rates of OH, HO2, and O3strongly correlate with corona UV flux. Although the contribution of corona‐produced OH to total global OH production is unlikely to be important, corona‐generated OH is likely a few orders of magnitude greater than oxidation by known processes in the vicinity of the affected leaves, potentially influencing atmospheric oxidation and tree and forest ecology.

    more » « less