skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Peroxy radical kinetics and new particle formation
Chamber experiments showing “pure biogenic nucleation” have shown an important role for covalently bound organic association products (“dimers”). These form from peroxy-radical (RO 2 ) cross reactions. Chamber experiments at low-NO x conditions often have quite high hydrocarbon reactant concentrations and relatively low concentrations of oxygenated volatile organic compounds (OVOCs). This can skew the radical chemistry in chambers relative to the real atmosphere, favoring RO 2 and disfavoring HO 2 radicals. RO 2 cross reaction kinetics are in turn highly uncertain. Here we explore the implications of the RO 2 to HO 2 ratio in chamber experiments as well as the implications of uncertain RO 2 cross reaction kinetics and the potential for added CO to mimic more atmospheric radical conditions. We treat a plausible range of RO 2 rate coefficients under both typical chamber conditions and atmospheric conditions to see how dimerization is affected by high concentrations of OVOCs, and thus lower RO 2  : HO 2 relative to smog chamber experiments. We find that if RO 2 reactions are fast, relatively high yields of low volatility dimers can participate in new particle formation. The results are highly sensitive to both the (uncertain) RO 2 kinetics as well as RO 2  : HO 2 , suggesting both that low-NO x chamber results should be extrapolated to the atmosphere with caution but also that the atmosphere itself may be highly sensitive to the specific (and rich) mixture of organic compounds and thus peroxy radicals.  more » « less
Award ID(s):
1801897
PAR ID:
10282691
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environmental Science: Atmospheres
Volume:
1
Issue:
2
ISSN:
2634-3606
Page Range / eLocation ID:
79 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organic peroxy radicals (RO2) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2and gas-phase dimers from O3-initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16–20H24–34O4–13) are primarily formed through RO2cross-reactions, with a typical rate constant of 0.75–2 × 10−12cm3molecule−1s−1and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2–2.5% by mole (0.5–6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16–20dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5–60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2, dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2from OH reaction and 10% from ozonolysis autoxidize at 3–10 s−1and ≥1 s−1, respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth.

     
    more » « less
  2. 2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in the low-temperature combustion of n -pentane. However, the reaction mechanisms and rates of consumption pathways remain unclear. In the present work, the pressure- and temperature-dependent kinetics of seven cyclic ether peroxy radicals, which stem from 2,4,dimethyloxetane via H-abstraction and O 2 addition, were determined. The automated kinetic workflow code, KinBot, was used to model the complexity of the chemistry in a stereochemically resolved manner and solve the resulting master equations from 300–1000 K and from 0.01–100 atm. The main conclusions from the calculations include (i) diastereomeric cyclic ether peroxy radicals show significantly different reactivities, (ii) the stereochemistry of the peroxy radical determines which QOOH isomerization steps are possible, (iii) conventional QOOH decomposition pathways, such as cyclic ether formation and HO 2 elimination, compete with ring-opening reactions, which primarily produce OH radicals, the outcome of which is sensitive to stereochemistry. Ring-opening reactions lead to unique products, such as unsaturated, acyclic peroxy radicals, that form direct connections with species present in other chemical kinetics mechanisms through "cross-over" reactions that may complicate the interpretation of experimental results from combustion of n-pentane and, by extension, other alkanes. For example, one cross-over reaction involving 1-hydroperoxy-4-pentanone-2-yl produces 2-(hydroperoxymethyl)-3-butanone-1-yl, which is an iso-pentane-derived ketohydroperoxide (KHP). At atmospheric pressure, the rate of chemical reactions of all seven peroxy radicals compete with that of collisional stabilization, resulting in well-skipping reactions. However, at 100 atm, only one out of seven peroxy radicals undergoes significant well-skipping reactions. The rates produced from the master equation calculations provide the first foundation for the development of detailed sub-mechanisms for cyclic ether intermediates. In addition, analysis of the complex reaction mechanisms of 2,4-dimethyloxetane-derived peroxy radicals provides insights into the effects of stereoisomers on reaction pathways and product yields. 
    more » « less
  3. Abstract

    The autoxidation of organic peroxy radicals (RO2) into hydroperoxy‐alkyl radicals (QOOH), then hydroperoxy‐peroxy radicals (HOOQO2) is now considered to be important in the Earth's atmosphere. To avoid mechanistic uncertainties these reactions are best studied by monitoring the radicals. But for the volatile and aliphatic RO2radicals playing key roles in the atmosphere this has long been an instrumental challenge. This work reports the first study of the autoxidation of aliphatic RO2radicals and is based on monitoring RO2and HOOQO2radicals. The rate coefficients,kiso(s−1), were determined both experimentally and theoretically using MC‐TST kinetic theory based on CCSD(T)//M06‐2X quantum chemical methodologies. The results were in excellent agreement and confirmed that the first H‐migration is strongly rate‐limiting in the oxidation of non‐oxygenated volatile organic compounds (VOCs). At higher relative humidity (2–30 %) water complexes were evidenced for HOOQO2radicals, which could be an important fate for HOO‐substituted RO2radicals in the atmosphere.

     
    more » « less
  4. Abstract

    The autoxidation of organic peroxy radicals (RO2) into hydroperoxy‐alkyl radicals (QOOH), then hydroperoxy‐peroxy radicals (HOOQO2) is now considered to be important in the Earth's atmosphere. To avoid mechanistic uncertainties these reactions are best studied by monitoring the radicals. But for the volatile and aliphatic RO2radicals playing key roles in the atmosphere this has long been an instrumental challenge. This work reports the first study of the autoxidation of aliphatic RO2radicals and is based on monitoring RO2and HOOQO2radicals. The rate coefficients,kiso(s−1), were determined both experimentally and theoretically using MC‐TST kinetic theory based on CCSD(T)//M06‐2X quantum chemical methodologies. The results were in excellent agreement and confirmed that the first H‐migration is strongly rate‐limiting in the oxidation of non‐oxygenated volatile organic compounds (VOCs). At higher relative humidity (2–30 %) water complexes were evidenced for HOOQO2radicals, which could be an important fate for HOO‐substituted RO2radicals in the atmosphere.

     
    more » « less
  5. Abstract The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO 2 ) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO 2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO 2 -NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer. 
    more » « less