skip to main content


Title: Being Prepared to be Unprepared: Meaning Making is Critical for the Resilience of Critical Infrastructure Systems
Infrastructure is essential to provision of public health, safety, and well-being. Yet, even critical infrastructure systems cannot be designed, constructed, and operated to be robust to the myriad of surprising hazards they are likely to be subject to. As such, there has been increasing emphasis in Federal policy on enhancing infrastructure resilience. Nonetheless, existing research on infrastructure systems often overlooks the role of individual decision-making and team dynamics under the conditions of high ambiguity and uncertainty typically associated with surprise. Although evidence suggests that human factors correlating with resilience and adaptive capacity emerge in later stages of psychological development, there is an acute need for new knowledge about the human capacity to comprehend increasing levels of complexity in the context of rapidly evolving technological, ecological, and social stress conditions. Sometimes, it is this developmental capacity for meaning-making that is the difference between adaptive and maladaptive response. Thus, without a better understanding of the human capacity to develop and assign meaning to complex systems, unquestioned misconceptions about the human role may prevail. In this work, we examine the dynamic relationships between human and technological systems from a developmental perspective. We argue that knowledge of resilient human development can improve system resilience by aligning roles and responsibilities with the developmental capacities of individuals and groups responsible for the design, operation, and management of critical infrastructures. Taking a holistic approach that draws on both psychology and resilience engineering literature facilitates construction of an integrated model that lends itself to empirical verification of future research.  more » « less
Award ID(s):
1760739
NSF-PAR ID:
10228185
Author(s) / Creator(s):
Date Published:
Journal Name:
Integral review
Volume:
16
Issue:
2
ISSN:
1553-3069
Page Range / eLocation ID:
97-123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is a growing understanding that cross‐sector risks faced by critical infrastructure assets in natural disasters require a collaborative foresight from multiple disciplines. However, current contributions to infrastructure interdependency analysis remain centered in discipline‐specific methodologies often constrained by underlying theories and assumptions. This perspective article contributes to ongoing discussions about the uses, challenges, and opportunities provided by interdisciplinary research in critical infrastructure interdependency analysis. In doing so, several modes of integration of computational modeling with contributions from the social sciences and other disciplines are explored to advance knowledge that can improve the infrastructure system resilience under extreme events. Three basic modes of method integration are identified and discussed: (a) integrating engineering models and social science research, (b) engaging communities in participative and collaborative forms of social learning and problem solving using simulation models to facilitate synthesis, exploration, and evaluation of scenarios, and (c) developing interactive simulations where IT systems and humans act as “peers” leveraging the capacity of distributed networked platforms and human‐in‐the‐loop architectures for improving situational awareness, real‐time decision making, and response capabilities in natural disasters. Depending on the conceptualization of the issues under investigation, these broadly defined modes of integration can coalesce to address key issues in promoting interdisciplinary research by outlining potential areas of future inquiry that would be most beneficial to the critical infrastructure protection communities.

     
    more » « less
  2. Abstract

    Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and green infrastructure. Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a parts store that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

     
    more » « less
  3. Abstract Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system. 
    more » « less
  4. Abstract

    Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.

     
    more » « less
  5. null (Ed.)
    Pervasive and accelerating climatic, technological, social, economic, and institutional change dictate that the challenges of the future will likely be vastly different and more complex than they are today. As our infrastructure systems (and their surrounding environment) become increasingly complex and beyond the cognitive understanding of any group of individuals or institutions, artificial intelligence (AI) may offer critical cognitive insights to ensure that systems adapt, services continue to be provided, and needs continue to be met. This paper conceptually links AI to various tasks and leadership capabilities in order to critically examine potential roles that AI can play in the management and implementation of infrastructure systems under growing complexity and uncertainty. Ultimately, various AI techniques appear to be increasingly well-suited to make sense of and operate under both stable (predictable) and chaotic (unpredictable) conditions. The ability to dynamically and continuously shift between stable and chaotic conditions is critical for effectively navigating our complex world. Thus, moving forward, a key adaptation for engineers will be to place increasing emphasis on creating the structural, financial, and knowledge conditions for enabling this type of flexibility in our integrated human-AI-infrastructure systems. Ultimately, as AI systems continue to evolve and become further embedded in our infrastructure systems, we may be implicitly or explicitly releasing control to algorithms. The potential benefits of this arrangement may outweigh the drawbacks. However, it is important to have open and candid discussions about the potential implications of this shift and whether or not those implications are desirable. 
    more » « less