Abstract Understanding the mechanisms underlying nutrient (nitrogen and phosphorus) and carbon cycling in reefs is critical for effective management. Research on reef nutrient and carbon cycling needs to account for (i) the contributions of multiple organisms, (ii) abiotic and biotic drivers, and (iii) a social-ecological perspective. In this paper, we review the mechanisms underlying nutrient and carbon cycling in reef social-ecological systems and analyse them using causal loop analysis. We identify direct and indirect pathways and feedback loops through nutrient and carbon cycles that shape the dominant benthic state of reefs: coral, algal, and sponge-dominated states. We find that two of three anthropogenic impact scenarios (size-selective fishing and land use change) have primarily negative consequences for coral and macroalgae via the nutrient and carbon cycles. A third scenario (runoff) has fewer negative impacts on sponges compared to other benthos. In all scenarios, frequent positive feedback loops (size-selective fishing: 7 of 12 loops; runoff: 6 of 9 loops; land use change: 8 of 11 loops) lead to system destabilization; however, the presence of multiple loops introduces avenues whereby reefs may retain coral dominance despite anthropogenic pressures. Context-specific information on the relative strength of loops will be necessary to predict future reef state.
more »
« less
Interdependence of social-ecological-technological systems in Phoenix, Arizona: consequences of an extreme precipitation event
Abstract Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.
more »
« less
- PAR ID:
- 10442898
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Infrastructure Preservation and Resilience
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-2521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Urban social–ecological–technological systems (SETS) are dynamic and respond to climate pressures. Change involves alterations to land and resource management, social organization, infrastructure, and design. Research often focuses on how climate change impacts urban SETS or on the characteristics of urban SETS that promote climate resilience. Yet passive approaches to urban climate change adaptation may disregard active SETS change by urban residents, planners, and policymakers that could be opportunities for adaptation. Here, we use evidence of urban social, ecological, and technological change to address how SETS change opens windows of opportunity to improve climate change adaptation.more » « less
-
null (Ed.)Infrastructure crises are not only technical problems for engineers to solve—they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum—or ‘eco-techno spectrum’—as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis ‘fixes.’ Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize—and better plan for—gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms.more » « less
-
Abstract Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been techno‐centric and heavily grounded in robustness—the capacity to prevent or minimize disruptions via a risk‐based approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilization—among others. As a result, techno‐centric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Techno‐centric strategies thatlock‐intoday's infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lock‐in, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with aSETS lenscan help identify and prevent maladaptive issues like lock‐in; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock‐in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation.more » « less
-
Groundwater depletion threatens global freshwater resources, necessitating urgent water management and policies to meet current and future needs. However, existing data-intensive approaches to assessments do not fully account for the complex human, climate, and water interactions within transboundary groundwater systems. Here, we present the design of and findings from a pilot participatory modeling workshop aiming to advance understanding of the hydrologic–human–climate feedback loops underpinning groundwater systems. Using participatory modeling tools and methods from the system dynamics tradition, we captured the mental models of researchers from water, social, data, and systems sciences. A total of 54 feedback loops were identified, demonstrating the potential of this methodology to adequately capture the complexity of groundwater systems. Based on the workshop outcomes, as an illustrative example, we discuss the value of participatory system modeling as a conceptualization tool, bridging perspectives across disciplinary silos. We further discuss how outcomes may inform future research on existing knowledge gaps around groundwater issues, and in doing so, advance interdisciplinary, use-inspired research for water decision-making more broadly.more » « less
An official website of the United States government
