Abstract Urban social–ecological–technological systems (SETS) are dynamic and respond to climate pressures. Change involves alterations to land and resource management, social organization, infrastructure, and design. Research often focuses on how climate change impacts urban SETS or on the characteristics of urban SETS that promote climate resilience. Yet passive approaches to urban climate change adaptation may disregard active SETS change by urban residents, planners, and policymakers that could be opportunities for adaptation. Here, we use evidence of urban social, ecological, and technological change to address how SETS change opens windows of opportunity to improve climate change adaptation.
more »
« less
Interdependence of social-ecological-technological systems in Phoenix, Arizona: consequences of an extreme precipitation event
Abstract Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.
more »
« less
- PAR ID:
- 10442898
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Infrastructure Preservation and Resilience
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-2521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Infrastructure crises are not only technical problems for engineers to solve—they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum—or ‘eco-techno spectrum’—as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis ‘fixes.’ Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize—and better plan for—gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms.more » « less
-
Abstract Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been techno‐centric and heavily grounded in robustness—the capacity to prevent or minimize disruptions via a risk‐based approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilization—among others. As a result, techno‐centric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Techno‐centric strategies thatlock‐intoday's infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lock‐in, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with aSETS lenscan help identify and prevent maladaptive issues like lock‐in; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock‐in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation.more » « less
-
Groundwater depletion threatens global freshwater resources, necessitating urgent water management and policies to meet current and future needs. However, existing data-intensive approaches to assessments do not fully account for the complex human, climate, and water interactions within transboundary groundwater systems. Here, we present the design of and findings from a pilot participatory modeling workshop aiming to advance understanding of the hydrologic–human–climate feedback loops underpinning groundwater systems. Using participatory modeling tools and methods from the system dynamics tradition, we captured the mental models of researchers from water, social, data, and systems sciences. A total of 54 feedback loops were identified, demonstrating the potential of this methodology to adequately capture the complexity of groundwater systems. Based on the workshop outcomes, as an illustrative example, we discuss the value of participatory system modeling as a conceptualization tool, bridging perspectives across disciplinary silos. We further discuss how outcomes may inform future research on existing knowledge gaps around groundwater issues, and in doing so, advance interdisciplinary, use-inspired research for water decision-making more broadly.more » « less
-
Following the call to mobilize studies of social-ecological systems and sociotechnical systems, the paper presents the case for studying integrated social-ecological-technological systems (SETS), and dynamic systems that include social, natural and technological (engineering) elements. Using the case study of informal roads in the Baikal region, authors of the article argue that re-focusing on SETS creates additional synergies and convergence options to improve the understanding of coupled systems and infrastructure in particular. Historically, transportation infrastructure has contributed to changes in natural and social systems of Northern Eurasia: Transsiberian and Baikal-Amur railroads and East Siberia – Pacific Ocean and Power of Siberia pipelines have been the main drivers of social-ecological transitions. At the local scale, informal roads serve as one of the most illustrative and characteristic examples of SETS. The examination of development and transformation of the informal roads allows exploring the interactions between socioeconomic processes, ecological dynamics and technological advances. The variety of informal roads reflects the importance of specific social, natural or technological factors in the SETS transformation largely unconditioned by policy and regulations thus providing a unique opportunity to better understand sustainability challenges facing infrastructure-based SETS. Relying on interviews and in-situ observations conducted in 2019 in the Baikal region, the following factors affecting sustainability of informal road SETS were identified: social (identification of actors involved in location, construction, maintenance, use and abandonment of informal roads), technological (road cover, width, frequency and nature of use by different kinds of vehicles), environmental (geomorphology and landscape sensitivity and vulnerability). The sustainability challenges of SETS development and transformations are found in changing mobility practices, social structure and economies of local communities, increased occurrences of forest fires and development of erosion and permafrost degradation in local environment and push for development of new technologies of transportation and communication.more » « less