skip to main content


Title: Soil fungal communities are compositionally resistant to drought manipulations – Evidence from culture-dependent and culture-independent analyses
Award ID(s):
1656006 2025849
NSF-PAR ID:
10228305
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fungal Ecology
Volume:
51
Issue:
C
ISSN:
1754-5048
Page Range / eLocation ID:
101062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering education researchers and practitioners have driven instructional innovation in undergraduate engineering instruction. Much of the research about educational innovation has focused on undergraduate classrooms in large enrollment courses and/or research-intensive institutions. Propagation of innovations across settings, especially those quite unlike the original context, has received less attention in the literature. This includes liberal arts institutions, which collectively educate a large number of undergraduate engineering students in various contexts. Therefore, this study focuses on the implementation of an instructional innovation in a liberal arts institution that started a new engineering program to educate a regional engineering workforce. This qualitative study documented the experiences of one engineering instructor who adopted and adapted a blended learning environment for undergraduate dynamics designed to promote active and collaborative learning in undergraduate engineering courses. We analyzed interviews, documents, artifacts, visual materials, and field notes to examine the propagation of the instructional system in context with cultural features in local institution settings. Our findings show how an engineering instructor orchestrated a culture-aligned adoption and adaptation of an instructional innovation. Using reflective practice, the research participant adapted the implemented innovative instruction to their hands-on institution culture, such as adjusting expectations in content, adapting resources to students’ individual needs, adjusting uncertainty of problem solving, and adapting to a hands-on institution culture. This research highlights the important role of institutional culture in local adaptations of educational innovations, and it provides the community with an expanded way to think about innovation propagation. 
    more » « less
  2. Abstract Background

    Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes. AGF have significant biotechnological potential owing to their diverse repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), which indirectly bolsters activity of other rumen microbes through metabolic exchange. While decades of literature suggest that polysaccharide degradation and AGF growth are accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been available to measure concentrations of individual species in co-culture. New methods to disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality for predictable co-culture design.

    Results

    We present a simple, microplate-based method to measure AGF and methanogen concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF growth rate and xylan and glucose degradation rates in co-culture with methanogens relative to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-culture relative to mono-culture, namely increased flux through the energy-generating hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary metabolism that preclude definitive explanations for this shift, our method will enable steady-state fluxomic experiments to probe AGF metabolism in greater detail.

    Conclusions

    The method we present to measure AGF and methanogen concentrations enables direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics are critical to develop a quantitative understanding of interwoven rumen metabolism, as well as the impact of co-culture on polysaccharide degradation and metabolite production. The framework presented here can inspire new methods to probe systems beyond AGF and methanogens. Simple modifications to the method will likely extend its utility to co-cultures with more than two organisms or those grown on solid substrates to facilitate the design and deployment of microbial communities for bioproduction and beyond.

     
    more » « less