skip to main content


Title: Isomerization-induced enhancement of luminescence in Au 28 (SR) 20 nanoclusters
Understanding the origin and structural basis of the photoluminescence (PL) phenomenon in thiolate-protected metal nanoclusters is of paramount importance for both fundamental science and practical applications. It remains a major challenge to correlate the PL properties with the atomic-level structure due to the complex interplay of the metal core ( i.e. the inner kernel) and the exterior shell ( i.e. surface Au( i )-thiolate staple motifs). Decoupling these two intertwined structural factors is critical in order to understand the PL origin. Herein, we utilize two Au 28 (SR) 20 nanoclusters with different –R groups, which possess the same core but different shell structures and thus provide an ideal system for the PL study. We discover that the Au 28 (CHT) 20 (CHT: cyclohexanethiolate) nanocluster exhibits a more than 15-fold higher PL quantum yield than the Au 28 (TBBT) 20 nanocluster (TBBT: p-tert -butylbenzenethiolate). Such an enhancement is found to originate from the different structural arrangement of the staple motifs in the shell, which modifies the electron relaxation dynamics in the inner core to different extents for the two nanoclusters. The emergence of a long PL lifetime component in the more emissive Au 28 (CHT) 20 nanocluster reveals that its PL is enhanced by suppressing the nonradiative pathway. The presence of long, interlocked staple motifs is further identified as a key structural parameter that favors the luminescence. Overall, this work offers structural insights into the PL origin in Au 28 (SR) 20 nanoclusters and provides some guidelines for designing luminescent metal nanoclusters for sensing and optoelectronic applications.  more » « less
Award ID(s):
1808675
NSF-PAR ID:
10228310
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
31
ISSN:
2041-6520
Page Range / eLocation ID:
8176 to 8183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1–3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X‐ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum‐confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold‐thiolate nanoclusters (Aun(SR)m) are revealed to contain an inner kernel, Au–S interface (motifs), and surface ligand (‐R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smallerEg. Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.

     
    more » « less
  2. The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s 1 ) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au 133 (TBBT) 52 ] 0 nanoclusters (where TBBT = 4- tert -butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au 133 (TBBT) 52 ] 0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au 133 (TBBT) 52 ] 0 to [Au 133 (TBBT) 52 ] + and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au 133 (TBBT) 52 , and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au 133 (TBBT) 52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi- D 2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au 133 (TBBT) 52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters. 
    more » « less
  3. null (Ed.)
    Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal–sulfur and sulfur–ligand bond dissociation in metal–thiolate systems. We first probe 66 metal–thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal–sulfur and sulfur–ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M 25 (SR) 18 ] − TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal–ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH 3 -based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S–R over the M–S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts. 
    more » « less
  4. Atomically precise, thiolate-protected gold nanoclusters (TPNCs) exhibit remarkable catalytic performance for the electrochemical reduction of carbon dioxide (CO 2 R) to CO. The origin of their high CO 2 R activity and selectivity has been attributed to partial ligand removal from the thiolate-covered surfaces of TPNCs to expose catalytically active sulfur atoms. Recently, heterometal doped (alloy) TPNCs have been shown to exhibit enhanced CO 2 R activity and selectivity compared to their monometallic counterparts. However, systematic studies on the effect of doping (metal type and location on TPNC) on active site exposure and CO 2 R activity are missing in literature. Herein, we apply Density Functional Theory calculations to investigate the effect of heterometal (Pt, Pd, Hg and Cd) doping of Au 25 (SR) 18 TPNC on the active site exposure and CO 2 R activity and selectivity. We reveal that doping significantly modifies relevant TPNC electronic properties, such as electron affinity, while also altering partial ligand removal and carboxyl (*COOH) intermediate formation energies. Furthermore, we demonstrate that changing the dopant ( e.g. Hg) position can change the selectivity of the TPNC towards CO (g) or H 2(g) formation, highlighting the importance of dopant locations in TPNC-based CO 2 R. Most notably, we report a universal ( i.e. capturing different dopant types and positions) linear trend between the ligand removal energy and i) the *COOH formation energy, as well as, ii) the hydrogen (*H) formation energy on the different alloy TPNCs. Thus, utilizing the ligand removal energy as a descriptor for CO 2 RR activity and selectivity, our work opens new avenues for accelerated computational screening of different alloy TPNCs for electrocatalytic CO 2 R applications. 
    more » « less
  5. Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure–property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au 24 Pt(SR) 18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au 24 Pt(SR) 18 in comparison with those of [Au 25 (SR) 18 ] 1− . Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands. 
    more » « less