skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Manifestation of the interplay between spin–orbit and Jahn–Teller effects in Au 25 superatom UV-Vis fingerprint spectra
Atomically precise nanoclusters play an important role in nanoscale catalysis, photonics, and quantum information science. Their nanochemical properties arise from their unique superatomic electronic structures. As the flagship of atomically precise nanochemistry, the Au 25 (SR) 18 nanocluster exhibits tunable spectroscopic signatures that are sensitive to the oxidation state. This work aims to unravel the physical underpinnings of the spectral progression of Au 25 (SR) 18 nanocluster using variational relativistic time-dependent density functional theory. The investigation will focus on the effects of superatomic spin–orbit coupling, its interplay with Jahn–Teller distortion, and their manifestations in the absorption spectra of Au 25 (SR) 18 nanoclusters of different oxidation states.  more » « less
Award ID(s):
1719797
PAR ID:
10410668
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since their discovery, thiolate-protected gold nanoclusters (Au n (SR) m ) have garnered a lot of interest due to their fascinating properties and “magic-number” stability. However, models describing the thermodynamic stability and electronic properties of these nanostructures as a function of their size are missing in the literature. Herein, we employ first principles calculations to rationalize the stability of fifteen experimentally determined gold nanoclusters in conjunction with a recently developed thermodynamic stability theory on small Au nanoclusters (≤102 Au atoms). Our results demonstrate that the thermodynamic stability theory can capture the stability of large, atomically precise nanoclusters, Au 279 (SR) 84 , Au 246 (SR) 80 , and Au 146 (SR) 57 , suggesting its applicability over larger cluster size regimes than its original development. Importantly, we develop structure–property relationships on Au nanoclusters, connecting their ionization potential and electron affinity to the number of gold atoms within the nanocluster. Altogether, a computational scheme is described that can aid experimental efforts towards a property-specific, targeted synthesis of gold nanoclusters. 
    more » « less
  2. Abstract Au nanoclusters often demonstrate useful optical properties such as visible/near‐infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8esuperatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide‐ and triphenylphosphine‐ligated Au11nanocluster, affording a cluster with a proposed molecular formula PtAu10(PPh3)7Br3. Electrochemical and spectroscopic analysis reveal an expansion of the HOMO–LUMO gap due to the Pt dopant, as well as relatively strong near‐infrared (NIR) photoluminescence which is atypical for an M11cluster (λmax= 700 nm, Φ = 1.88 %). The Pt dopant additionally boosted photostability; more than tenfold. Lastly, we demonstrate the application of the PtAu10cluster's NIR photoluminescence in the detection of the nitroaromatic compound 2,4‐dinitrotoluene, with a limit‐of‐detection of 9.52 μM (1.74 ppm). The notable ability of a single central Pt dopant to unlock photoluminescence in a non‐luminescent nanocluster highlights the advantages of heterometal doping in the tuning of both the optical and thermodynamic properties of Au nanoclusters. 
    more » « less
  3. null (Ed.)
    Understanding the origin and structural basis of the photoluminescence (PL) phenomenon in thiolate-protected metal nanoclusters is of paramount importance for both fundamental science and practical applications. It remains a major challenge to correlate the PL properties with the atomic-level structure due to the complex interplay of the metal core ( i.e. the inner kernel) and the exterior shell ( i.e. surface Au( i )-thiolate staple motifs). Decoupling these two intertwined structural factors is critical in order to understand the PL origin. Herein, we utilize two Au 28 (SR) 20 nanoclusters with different –R groups, which possess the same core but different shell structures and thus provide an ideal system for the PL study. We discover that the Au 28 (CHT) 20 (CHT: cyclohexanethiolate) nanocluster exhibits a more than 15-fold higher PL quantum yield than the Au 28 (TBBT) 20 nanocluster (TBBT: p-tert -butylbenzenethiolate). Such an enhancement is found to originate from the different structural arrangement of the staple motifs in the shell, which modifies the electron relaxation dynamics in the inner core to different extents for the two nanoclusters. The emergence of a long PL lifetime component in the more emissive Au 28 (CHT) 20 nanocluster reveals that its PL is enhanced by suppressing the nonradiative pathway. The presence of long, interlocked staple motifs is further identified as a key structural parameter that favors the luminescence. Overall, this work offers structural insights into the PL origin in Au 28 (SR) 20 nanoclusters and provides some guidelines for designing luminescent metal nanoclusters for sensing and optoelectronic applications. 
    more » « less
  4. Abstract The crystal structures of 4 ligand‐rotational isomers of Au25(PET)18are presented. Two new ligand‐rotational isomers are revealed, and two higher‐quality structures (allowing complete solution of the ligand shell) of previously solved Au25(PET)18clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25(SR)18structure solved. These structures combined with previously published Au25(SR)18structures enable an analysis of the empirical ligand conformation landscape for Au25(SR)18clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature. 
    more » « less
  5. Recently, silver nanoclusters have garnered considerable attention after the high-yield synthesis and crystallization of a thiolate-protected silver nanocluster, Na4Ag44(SR)30 (SR, protecting thiolate ligand). One intriguing feature of Na4Ag44(SR)30 is its outstanding stability and resistance to chemical reactions, in striking difference from other silver nanostructures whose susceptibility to oxidation (tarnishing) has been commonly observed and thus limits their applications in nanotechnology. Herein, we report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal–ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semiaqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semiaqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions. This work offers an atomic level mechanism on the ultrahigh stability of the Na4Ag44(SR)30 nanoclusters from the nanocluster-coordinating solvent interaction perspective, and implies that nanocluster-solvent interactions should be carefully considered moving forward for silver nanoclusters, as they can influence the electronic/chemical properties of the nanocluster as well as the surface accessibility of small molecules for potential catalytic and biomedical applications. 
    more » « less