Abstract The observables associated with a quantum system S form a non-commutative algebra A S . It is assumed that a density matrix ρ can be determined from the expectation values of observables. But A S admits inner automorphisms a ↦ u a u − 1 , a , u ∈ A S , u * u = u u * = 1 , so that its individual elements can be identified only up to unitary transformations. So since Tr  ρ ( uau *) = Tr( u * ρu ) a , only the spectrum of ρ , or its characteristic polynomial, can be determined in quantum mechanics. In local quantum field theory, ρ cannot be determined at all, as we shall explain. However, abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables in abelian algebras A M ⊂ A S ( M for measurement, S for system). We study the uncertainties in extending ρ | A M to ρ | A S (the determination of which means measurement of A S ) and devise a protocol to determine ρ | A S ≡ ρ by determining ρ | A M for different choices of A M . The problem we formulate and study is a generalization of the Kadison–Singer theorem. We give an example where the system S is a particle on a circle and the experiment measures the abelian algebra of a magnetic field B coupled to S . The measurement of B gives information about the state ρ of the system S due to operator mixing. Associated uncertainty principles for von Neumann entropy are discussed in the appendix, adapting the earlier work by Białynicki-Birula and Mycielski (1975 Commun. Math. Phys. 44 129) to the present case. 
                        more » 
                        « less   
                    
                            
                            An alternative method for extracting the von Neumann entropy from Rényi entropies
                        
                    
    
            A bstract An alternative method is presented for extracting the von Neumann entropy − Tr( ρ ln ρ ) from Tr( ρ n ) for integer n in a quantum system with density matrix ρ . Instead of relying on direct analytic continuation in n , the method uses a generating function − Tr{ ρ ln[(1 − zρ )/(1 − z )]} of an auxiliary complex variable z . The generating function has a Taylor series that is absolutely convergent within |z| < 1, and may be analytically continued in z to z = −∞ where it gives the von Neumann entropy. As an example, we use the method to calculate analytically the CFT entanglement entropy of two intervals in the small cross ratio limit, reproducing a result that Calabrese et al. obtained by direct analytic continuation in n . Further examples are provided by numerical calculations of the entanglement entropy of two intervals for general cross ratios, and of one interval at finite temperature and finite interval length. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10228361
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We revisit the connection between von Neumann algebra index and relative entropy. We observe that the Pimsner-Popa index connects to maximal sandwiched p-R\'enyi relative entropy for all p between 1/2 and infinity, including the Umegaki's relative entropy at p=1. Based on that, we introduce a new notation of maximal relative entropy for a inclusion of finite von Neumann algebras. These maximal relative entropy generalizes subfactors index and has application in estimating decoherence time of quantum Markov semigroupmore » « less
- 
            null (Ed.)A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.more » « less
- 
            Using IBM's publicly accessible quantum computers, we have analyzed the entropies of Schrödinger's cat states, which have the form Ψ = (1/2) 1/2 [|0 0 0⋯0〉 + |1 1 1⋯1〉]. We have obtained the average Shannon entropy S So of the distribution over measurement outcomes from 75 runs of 8192 shots, for each of the numbers of entangled qubits, on each of the quantum computers tested. For the distribution over N fault-free measurements on pure cat states, S So would approach one as N → ∞, independent of the number of qubits; but we have found that S So varies nearly linearly with the number of qubits n . The slope of S So versus the number of qubits differs among computers with the same quantum volumes. We have developed a two-parameter model that reproduces the near-linear dependence of the entropy on the number of qubits, based on the probabilities of observing the output 0 when a qubit is set to |0〉 and 1 when it is set to |1〉. The slope increases as the error rate increases. The slope provides a sensitive measure of the accuracy of a quantum computer, so it serves as a quickly determinable index of performance. We have used tomographic methods with error mitigation as described in the qiskit documentation to find the density matrix ρ and evaluate the von Neumann entropies of the cat states. From the reduced density matrices for individual qubits, we have calculated the entanglement entropies. The reduced density matrices represent mixed states with approximately 50/50 probabilities for states |0〉 and |1〉. The entanglement entropies are very close to one.more » « less
- 
            State-of-the-art many-body wave function techniques rely on heuristics to achieve high accuracy at an attainable computational cost to solve the many-body Schrödinger equation. By far, the most common property used to assess accuracy has been the total energy; however, total energies do not give a complete picture of electron correlation. In this work, we assess the von Neumann entropy of the one-particle reduced density matrix (1-RDM) to compare selected configuration interaction (CI), coupled cluster, variational Monte Carlo, and fixed-node diffusion Monte Carlo for benchmark hydrogen chains. A new algorithm, the circle reject method, is presented, which improves the efficiency of evaluating the von Neumann entropy using quantum Monte Carlo by several orders of magnitude. The von Neumann entropy of the 1-RDM and the eigenvalues of the 1-RDM are shown to distinguish between the dynamic correlation introduced by the Jastrow and the static correlation introduced by determinants with large weights, confirming some of the lore in the field concerning the difference between the selected CI and Slater–Jastrow wave functions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    