skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UAV-enabled Human Internet of Things
In this paper, an Unmanned Aerial Vehicles (UAVs) - enabled human Internet of Things (IoT) architecture is introduced to enable the rescue operations in public safety systems (PSSs). Initially, the first responders select in an autonomous manner the disaster area that they will support by considering the dynamic socio-physical changes of the surrounding environment and following a set of gradient ascent reinforcement learning algorithms. Then, the victims create coalitions among each other and the first responders at each disaster area based on the expected- maximization approach. Finally, the first responders select the UAVs that communicate with the Emergency Control Center (ECC), to which they will report the collected data from the disaster areas by adopting a set of log-linear reinforcement learning algorithms. The overall distributed UAV-enabled human Internet of Things architecture is evaluated via detailed numerical results that highlight its key operational features and the performance benefits of the proposed framework.  more » « less
Award ID(s):
1849739
PAR ID:
10228437
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)
Page Range / eLocation ID:
312 to 319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the field of autonomous transportation systems, the integration of Unmanned Aerial Vehicles (UAVs) in emergency response scenarios is important for enhancing the operational efficiency and the victims’ positioning. This article presents a novel Positioning, Navigation, and Timing (PNT) framework, namedHEROES, which leverages the UAV and integrated sensing and communication technologies to address the challenges in post-disaster environments. Our approach focuses on a comprehensive post-disaster scenario involving multiple victims, first responders, UAVs, and an emergency control center. HEROES enables UAVs to function as anchor nodes and facilitate the precise positioning of the victims while simultaneously collecting critical data from the disaster area. We further introduce a reinforcement learning model based on the Optimistic Q-learning with Upper Confidence Bound algorithm, enabling the victims and first responders to autonomously select the most advantageous UAV connections based on their channel gain, shadowing probability, and positional characteristics. Furthermore, HEROES is based on a satisfaction game-theoretic model to enhance the sensing, communication, and positioning functionalities. Our analysis reveals the existence of various satisfaction equilibria, including minimum efficient satisfaction equilibrium, ensuring that the UAVs meet their quality of service constraints at minimal operational costs. Extensive experimental results validate the scalability and performance of HEROES, demonstrating significant improvements over existing state-of-the-art methods in delivering PNT services during humanitarian emergencies. 
    more » « less
  2. null (Ed.)
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs' data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven by exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to an NE, and their tradeoffs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios. 
    more » « less
  3. null (Ed.)
    Recent technological advances in the use of Unmanned Aerial Vehicles (UAVs) and Wireless Powered Communications (WPC) have enabled the energy efficient operation of the Public Safety Networks (PSN) during disaster scenarios. In this paper, an energy efficient information flow and energy harvesting framework capturing users' risk-aware characteristics is introduced based on the principles of Contract Theory. To better support the operational effectiveness of the proposed framework, users are clustered in rescue groups following a socio-physical-aware group formation mechanism, while rescue leaders for each group are selected. A reinforcement learning approach is applied to enable the optimal matching between the UAVs and the rescue leaders in a distributed and efficient manner. The proposed contract-theoretic framework models the UAVs-victims relation based on a labor market setting via offering rewards to the users (incentives) in order to compensate them for their invested labor (reporting information). Detailed numerical results demonstrate the benefits and superiority of the proposed framework under different settings. 
    more » « less
  4. This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
    more » « less
  5. Abstract—Internet of Things (IoT) has become a pervasive and diverse concept in recent years. IoT applications and services have given rise to a number of sub-fields in the IoT space. Wearable technology, with its particular set of characteristics and application domains, has formed a rapidly growing subfield of IoT, viz., Wearable Internet of Things (WIoT). While numerous wearable devices are available in the market today, security and privacy are key factors for wide adoption of WIoT. Wearable devices are resource constrained by nature with limited storage, power, and computation. A Cloud-Enabled IoT (CEIoT) architecture, a dominant paradigm currently shaping the industry and suggested by many researchers, needs to be adopted for WIoT. In this paper, we develop an access control framework for cloud-enabled WIoT (CEWIoT) based on the Access Control Oriented (ACO) architecture recently developed for CEIoT in general. We first enhance the ACO architecture from the perspective of WIoT by adding an Object Abstraction Layer, and then develop our framework based on interactions between different layers of this enhanced ACO architecture. We present a general classification and taxonomy of IoT devices, along with brief introduction to various application domains of IoT and WIoT. We then present a remote health and fitness monitoring use case to illustrate different access control aspects of our framework and outline its possible enforcement in a commercial CEIoT platform, viz., AWS IoT. Finally, we discuss the objectives of our access control framework and relevant open problems. 
    more » « less