skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 31, 2026

Title: HEROES: Humanitarian Emergency Response based on UAV-enabled Integrated Sensing and Communication, Positioning, and Satisfaction Games
In the field of autonomous transportation systems, the integration of Unmanned Aerial Vehicles (UAVs) in emergency response scenarios is important for enhancing the operational efficiency and the victims’ positioning. This article presents a novel Positioning, Navigation, and Timing (PNT) framework, namedHEROES, which leverages the UAV and integrated sensing and communication technologies to address the challenges in post-disaster environments. Our approach focuses on a comprehensive post-disaster scenario involving multiple victims, first responders, UAVs, and an emergency control center. HEROES enables UAVs to function as anchor nodes and facilitate the precise positioning of the victims while simultaneously collecting critical data from the disaster area. We further introduce a reinforcement learning model based on the Optimistic Q-learning with Upper Confidence Bound algorithm, enabling the victims and first responders to autonomously select the most advantageous UAV connections based on their channel gain, shadowing probability, and positional characteristics. Furthermore, HEROES is based on a satisfaction game-theoretic model to enhance the sensing, communication, and positioning functionalities. Our analysis reveals the existence of various satisfaction equilibria, including minimum efficient satisfaction equilibrium, ensuring that the UAVs meet their quality of service constraints at minimal operational costs. Extensive experimental results validate the scalability and performance of HEROES, demonstrating significant improvements over existing state-of-the-art methods in delivering PNT services during humanitarian emergencies.  more » « less
Award ID(s):
2521673
PAR ID:
10614726
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Journal on Autonomous Transportation Systems
Volume:
2
Issue:
4
ISSN:
2833-0528
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, an Unmanned Aerial Vehicles (UAVs) - enabled human Internet of Things (IoT) architecture is introduced to enable the rescue operations in public safety systems (PSSs). Initially, the first responders select in an autonomous manner the disaster area that they will support by considering the dynamic socio-physical changes of the surrounding environment and following a set of gradient ascent reinforcement learning algorithms. Then, the victims create coalitions among each other and the first responders at each disaster area based on the expected- maximization approach. Finally, the first responders select the UAVs that communicate with the Emergency Control Center (ECC), to which they will report the collected data from the disaster areas by adopting a set of log-linear reinforcement learning algorithms. The overall distributed UAV-enabled human Internet of Things architecture is evaluated via detailed numerical results that highlight its key operational features and the performance benefits of the proposed framework. 
    more » « less
  2. null (Ed.)
    Unmanned aerial vehicles (UAVs), equipped with a variety of sensors, are being used to provide actionable information to augment first responders’ situational awareness in disaster areas for urban search and rescue (SaR) operations. However, existing aerial robots are unable to sense the occluded spaces in collapsed structures, and voids buried in disaster rubble that may contain victims. In this study, we developed a framework, AiRobSim, to simulate an aerial robot to acquire both aboveground and underground information for post-disaster SaR. The integration of UAV, ground-penetrating radar (GPR), and other sensors, such as global navigation satellite system (GNSS), inertial measurement unit (IMU), and cameras, enables the aerial robot to provide a holistic view of the complex urban disaster areas. The robot-collected data can help locate critical spaces under the rubble to save trapped victims. The simulation framework can serve as a virtual training platform for novice users to control and operate the robot before actual deployment. Data streams provided by the platform, which include maneuver commands, robot states and environmental information, have potential to facilitate the understanding of the decision-making process in urban SaR and the training of future intelligent SaR robots. 
    more » « less
  3. The importance to our society of emergency network communications cannot be underestimated. The loss of communication and network systems in a state of emergency denies victims of disaster and city emergency response teams critical information about the crisis. It is essential to restore communication systems and service in order to ensure continuous and efficient emergency operations. This paper presents a cloud-based cost-effective emergency network management system to provide dynamic network services. We have developed a network application to enable users to access the Internet during an emergency. The application is ready to immediately restore lost connectivity through economical embedded systems and UAVs. We implement our prototypes based on Resin.io, a framework that utilizes Linux containers on IoT(Internet of Things) devices to deploy applications. We evaluate our systems on Raspberry Pi, a popular embedded system. We demonstrate the feasibility of our proposed system, showing that it is an economical infrastructure that it can successfully be used for an emergency network to replace a demolished network infrastructure. 
    more » « less
  4. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption — algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem — a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  5. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption --- algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem --- a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less