skip to main content


Title: Radio Galaxy Zoo: new giant radio galaxies in the RGZ DR1 catalogue
ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $\gt 60$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments.  more » « less
Award ID(s):
1714205
NSF-PAR ID:
10228486
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
68 to 76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the study of the internal dynamics of the intriguing galaxy cluster Abell 1703, a system hosting a probable giant radio halo whose dynamical status is still controversial. Our analysis is based on unpublished spectroscopic data acquired at the Italian Telescopio Nazionale Galileo and data publicly available in the literature. We also use photometric data from the Sloan Digital Sky Survey. We select 147 cluster members and compute the cluster redshift 〈z〉 ∼ 0.277 and the global line-of-sight velocity dispersion σv ∼ 1300 km s−1. We infer that Abell 1703 is a massive cluster: M200 ∼ 1–2 × 1015 M⊙. The results of our study disagree with the picture of an unimodal, relaxed cluster as suggested by previous studies based on the gravitational lensing analysis and support the view of a perturbed dynamics proposed by recent works based on Chandra X-ray data. The first strong evidence of a dynamically disturbed cluster comes from the peculiarity of the BCG velocity with respect to the first moment of the velocity distribution of member galaxies. Moreover, several statistical tests employed to study the cluster galaxies kinematics find significant evidence of substructure, being Abell 1703 composed by at least two or three subclumps probably caught after the core–core passage. In this observational scenario, the suspected existence of a radio halo in the centre of this cluster is not surprising and well agrees with the theoretical models describing diffuse radio sources in clusters.

     
    more » « less
  2. ABSTRACT

    Abell 407 (A407) is a unique galaxy cluster hosting a central compact group of nine galaxies (named as ‘Zwicky’s Nonet’; G1–G9 in this work) within a 30 kpc radius region. The cluster core also hosts a luminous radio active galactic nucleus (AGN), 4C 35.06 with helically twisted jets extending over 200 kpc. With a 44 ks Chandra observation of A407, we characterize the X-ray properties of its intracluster medium and central galaxies. The mean X-ray temperature of A407 is 2.7 keV and the M200 is $1.9 \times 10^{14}\, {\mathrm{M}_{\odot }}$. We suggest that A407 has a weak cool core at r < 60 kpc scales and at its very centre, <1–2 kpc radius, a small galaxy corona associated with the strong radio AGN. We also conclude that the AGN 4C 35.06 host galaxy is most likely G3. We suggest that the central group of galaxies is undergoing a ‘slow merge’ procedure. The range of the merging time-scale is 0.3 ∼ 2.3 Gyr and the stellar mass of the future brightest cluster galaxy (BCG) will be $7.4\times 10^{11} \, \mathrm{M}_{\odot }$. We find that the regions that overlap with the radio jets have higher temperature and metallicity. This is consistent with AGN feedback activity. The central entropy is higher than that for other clusters, which may be due to the AGN feedback and/or merging activity. With all these facts, we suggest that A407 is a unique and rare system in the local universe that could help us to understand the formation of a massive BCG.

     
    more » « less
  3. Abstract

    We present the discovery of the most distant, dynamically relaxed cool core cluster, SPT-CL J2215−3537 (SPT2215), and its central brightest cluster galaxy (BCG) atz= 1.16. Using new X-ray observations, we demonstrate that SPT2215 harbors a strong cool core with a central cooling time of 200 Myr (at 10 kpc) and a maximal intracluster medium cooling rate of 1900 ± 400Myr−1. This prodigious cooling may be responsible for fueling the extended, star-forming filaments observed in Hubble Space Telescope imaging. Based on new spectrophotometric data, we detect bright [Oii] emission in the BCG, implying an unobscured star formation rate (SFR) of320140+230Myr−1. The detection of a weak radio source (2.0 ± 0.8 mJy at 0.8 GHz) suggests ongoing feedback from an active galactic nucleus (AGN), though the implied jet power is less than half the cooling luminosity of the hot gas, consistent with cooling overpowering heating. The extreme cooling and SFR of SPT2215 are rare among known cool core clusters, and it is even more remarkable that we observe these at such high redshift, when most clusters are still dynamically disturbed. The high mass of this cluster, coupled with the fact that it is dynamically relaxed with a highly isolated BCG, suggests that it is an exceptionally rare system that must have formed very rapidly in the early universe. Combined with the high SFR, SPT2215 may be a high-zanalog of the Phoenix cluster, potentially providing insight into the limits of AGN feedback and star formation in the most massive galaxies.

     
    more » « less
  4. null (Ed.)
    Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Giant Metrewave Radio Telescope band 3 (300−500 MHz) and band 4 (550−850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power law between 144 MHz and 5.5 GHz with a mean spectral slope α  = −1.16 ± 0.03. Despite the complex morphology of this relic, its subregions and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming diffusive shock acceleration, we estimated a dominant Mach number of ∼3.7 for the shocks that make up the relic. A comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with α nearly constant, namely between −1.13 and −1.17, for Mach numbers 3.5 − 4.0. The spectral shapes inferred from spatially resolved regions show curvature, we speculate that the relic is inclined along the line of sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line of sight. 
    more » « less
  5. null (Ed.)
    We present an analysis of archival Chandra data of the merging galaxy cluster ClG 0217+70. The Fe  XXV He α X-ray emission line is clearly visible in the 25 ks observation, allowing a precise determination of the redshift of the cluster as z  = 0.180 ± 0.006. We measure k T 500  = 8.3  ±  0.4 keV and estimate M 500  = (1.06 ± 0.11) × 10 15   M ⊙ based on existing scaling relations. Correcting both the radio and X-ray luminosities with the revised redshift reported here, which is much larger than previously inferred based on sparse optical data, this object is no longer an X-ray underluminous outlier in the L X  −  P radio scaling relation. The new redshift also means that, in terms of physical scale, ClG 0217+70 hosts one of the largest radio halos and one of the largest radio relics known to date. Most of the relic candidates lie in projection beyond r 200 . The X-ray morphological parameters suggest that the intracluster medium is still dynamically disturbed. Two X-ray surface brightness discontinuities are confirmed in the northern and southern parts of the cluster, with density jumps of 1.40 ± 0.16 and 3.0 ± 0.6, respectively. We also find a 700 × 200 kpc X-ray faint channel in the western part of the cluster, which may correspond to compressed heated gas or increased non-thermal pressure due to turbulence or magnetic fields. 
    more » « less