skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Weak-lensing Characterization of the Dark Matter in 29 Merging Clusters that Exhibit Radio Relics
We present a multiwavelength analysis of 29 merging galaxy clusters that exhibit radio relics. For each merging system, we perform a weak-lensing analysis on Subaru optical imaging. We generate high-resolution mass maps of the dark matter distributions, which are critical for discerning the merging constituents. Combining the weak-lensing detections with X-ray emission, radio emission, and galaxy redshifts, we discuss the formation of radio relics from the past collision. For each cluster, we obtain mass estimates by fitting a multicomponent Navarro–Frenk–White model with and without a concentration–mass relation. We compare the mass estimates of each subcluster to their velocity dispersion measurements and find that they preferentially lie below the expected velocity dispersion scaling relation, especially at the low-mass end (∼1014M). We show that the majority of the clusters that exhibit radio relics are in major mergers with a mass ratio below 1:4. We investigate the position of the mass peak relative to the galaxy luminosity peak, number density peak, and brightest cluster galaxy (BCG) locations and find that the BCG tends to better trace the mass peak position. Finally, we update a golden sample of eight galaxy clusters that have the simplest geometries and can provide the cleanest picture of the past merger, which we recommend for further investigation to constrain the nature of dark matter and the acceleration process that leads to radio relics.  more » « less
Award ID(s):
2308383
PAR ID:
10598150
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
277
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and their embedded BCGs are aligned, with an average ∼20 degree angle between their major axes. The bias in weak lensing cluster mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve weak-lensing mass estimates. 
    more » « less
  2. Abstract The galaxy cluster A746 (z= 0.214), featuring a double radio relic system, two isolated radio relics, a possible radio halo, disturbed V-shaped X-ray emission, and intricate galaxy distributions, is a unique and complex merging system. We present a weak-lensing analysis of A746 based on wide-field imaging data from Subaru/Hyper Suprime-Cam observations. The mass distribution is characterized by a main peak, which coincides with the center of the X-ray emission. At this main peak, we detect two extensions toward the north and west tracing the cluster galaxy and X-ray distributions. Despite the ongoing merger, our estimate of the A746 global massM500= 4.4 ± 1.0 × 1014Mis consistent with the previous results from Sunyaev-Zel'dovich and X-ray observations. We conclude that reconciling the distributions of mass, galaxies, and intracluster medium with the double radio relic system and other radio features remains challenging. 
    more » « less
  3. Abstract The Local Volume Complete Cluster Survey is an ongoing program to observe nearly a hundred low-redshift X-ray-luminous galaxy clusters (redshifts 0.03 <z< 0.12 and X-ray luminosities in the 0.1–2.4 keV bandLX500c> 1044erg s−1) with the Dark Energy Camera, capturing data in theu,g,r,i,zbands with a 5σpoint source depth of approximately 25th–26th AB magnitudes. Here, we map the aperture masses in 58 galaxy cluster fields using weak gravitational lensing. These clusters span a variety of dynamical states, from nearly relaxed to merging systems, and approximately half of them have not been subject to detailed weak lensing analysis before. In each cluster field, we analyze the alignment between the 2D mass distribution described by the aperture mass map, the 2D red-sequence (RS) galaxy distribution, and the brightest cluster galaxy (BCG). We find that the orientations of the BCG and the RS distribution are strongly aligned throughout the interiors of the clusters: the median misalignment angle is 19° within 2 Mpc. We also observe the alignment between the orientations of the RS distribution and the overall cluster mass distribution (by a median difference of 32° within 1 Mpc), although this is constrained by galaxy shape noise and the limitations of our cluster sample size. These types of alignment suggest long-term dynamical evolution within the clusters over cosmic timescales. 
    more » « less
  4. We present a study of the weak lensing inferred matter profiles ΔΣ(R) of 698 South Pole Telescope (SPT) thermal Sunyaev-Zel’dovich effect (tSZE) selected and MCMF optically confirmed galaxy clusters in the redshift range 0.25 <  z <  0.94 that have associated weak gravitational lensing shear profiles from the Dark Energy Survey (DES). Rescaling these profiles to account for the mass dependent size and the redshift dependent density produces average rescaled matter profiles ΔΣ(R/R200c)/(ρcritR200c) with a lower dispersion than the unscaled ΔΣ(R) versions, indicating a significant degree of self-similarity. Galaxy clusters from hydrodynamical simulations also exhibit matter profiles that suggest a high degree of self-similarity, with RMS variation among the average rescaled matter profiles with redshift and mass falling by a factor of approximately six and 23, respectively, compared to the unscaled average matter profiles. We employed this regularity in a new Bayesian method for weak lensing mass calibration that employs the so-called cluster mass posteriorP(M200|ζ̂, λ̂,z), which describes the individual cluster masses given their tSZE (ζ̂) and optical (λ̂,z) observables. This method enables simultaneous constraints on richnessλ-mass and tSZE detection significanceζ-mass relations using average rescaled cluster matter profiles. We validated the method using realistic mock datasets and present observable-mass relation constraints for the SPT×DES sample, where we constrained the amplitude, mass trend, redshift trend, and intrinsic scatter. Our observable-mass relation results are in agreement with the mass calibration derived from the recent cosmological analysis of the SPT×DES data based on a cluster-by-cluster lensing calibration. Our new mass calibration technique offers a higher efficiency when compared to the single cluster calibration technique. We present new validation tests of the observable-mass relation that indicate the underlying power-law form and scatter are adequate to describe the real cluster sample but that also suggest a redshift variation in the intrinsic scatter of theλ-mass relation may offer a better description. In addition, the average rescaled matter profiles offer high signal-to-noise ratio (S/N) constraints on the shape of real cluster matter profiles, which are in good agreement with available hydrodynamical ΛCDM simulations. This high S/N profile contains information about baryon feedback, the collisional nature of dark matter, and potential deviations from general relativity. 
    more » « less
  5. We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲  z  ≲ 1.7 ( z median  = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ  > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z  ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 <  z  < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts. 
    more » « less