skip to main content


Title: Energy Harvesting Floor from Commercial Cellulosic Materials for a Self-Powered Wireless Transmission Sensor System
Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications.  more » « less
Award ID(s):
1843965
NSF-PAR ID:
10228529
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
13
Issue:
4
ISSN:
1944-8252
Page Range / eLocation ID:
5133-5141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self‐powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends’ triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA‐gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self‐powered health diagnostics and therapeutics.

     
    more » « less
  2.  
    more » « less
  3. Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies. 
    more » « less
  4. Abstract

    Progress in soft and stretchable electronics depends on energy sources that are mechanically compliant, elastically deformable, and renewable. Energy harvesting using triboelectric nanogenerators (TENGs) made from soft materials provides a promising approach to address this critical need. Here, an elastomeric composite is introduced with sedimented liquid metal (LM) droplets for TENG‐based energy harvesting that relies on assembly of the LM to form phase‐separated conductive and insulating regions. The sedimented LM elastomer TENG (SLM‐TENG) exhibits ultrahigh stretchability (strain limit>500% strain), skin‐like compliance (modulus<60 kPa), reliable device stability (>10 000 cycles), and appreciable electrical output performance (max peak power density=1 mW cm−2). SLM‐TENGs can be integrated with highly elastic stretchable fabrics, thereby enabling broad integration with wearable electronics. A stretchable and wearable SLM‐TENG is demonstrated that harvests energy from human motion through a patch attached to the knee or integrated into exercise clothing. This body‐mounted TENG device can generate enough electricity to fully power a wearable computing device (hygro‐thermometer with digital display) after 2.2 min of running on a treadmill.

     
    more » « less
  5. Abstract

    Human skin is equipped with slow adapting (SA) and fast adapting (FA) capabilities simultaneously. To mimic such functionalities, elaborately designed devices have been explored by integrating multiple sensing elements or adopting multimode sensing principles. However, the complicated fabrication, signal mismatch of different modules, complex operation, and high power‐consumption hinder their widespread applications. Here, a new type of single‐mode and self‐powered mechanoreceptor that can mimic both SA and FA via seamless fusion of complementary while compatible potentiometric and triboelectric sensing principles is reported. The resultant potentiometric–triboelectric hybridized mechanoreceptor exhibits distinctive features that are hard to achieve via currently existing methods, including single‐mode output (only voltage signal), greatly simplified operation (single‐measurement setup), ultralow power‐consumption (<1 nW), self‐adaptive response behavior, and good capability for resolving complex stimuli. Diverse mechanical characteristics, including magnitude, duration, frequency, applying and releasing speed, can be well interpreted with this single‐mode and self‐powered mechanoreceptor. Its promising application for monitoring object manipulations with a soft robotic gripper is explored. Furthermore, the versatility of the mechanoreceptor for resolving complex stimuli in diverse daily scenarios is demonstrated. This work presents a new design that will significantly simplify the fabrication/operation and meanwhile boost the functionality/energy‐efficiency of future electronic devices and smart systems.

     
    more » « less