Abstract Stretchable triboelectric nanogenerators (TENGs) represent a new class of energy‐harvesting devices for powering wearable devices. However, most of them are associated with poor stretchability, low stability, and limited substrate material choices. This work presents the design and demonstration of highly stretchable and stable TENGs based on liquid metalel ectrodes with different phases. The conductive and fluidic properties of eutectic gallium‐indium (EGaIn) in the serpentine microfluidic channel ensure the robust performance of the EGaIn‐based TENG upon stretching over several hundred percent. The bi‐phasic EGaIn (bGaIn) from oxidation lowers surface tension and increases adhesion for printing on diverse substrates with high output performance parameters. The optimization of the electrode shapes in the bGaIn‐based TENGs can reduce the device footprint and weight, while enhancing stretchability. The applications of the EGaIn‐ and bGaIn‐based TENG include smart elastic bands for human movement monitoring and smart carpets with integrated data transmission/processing modules for headcount monitoring/control. Combining the concept of origami in the paper‐based bGaIn TENG can reduce the device footprint to improve output performance per unit area. The integration of bGaIn‐TENG on a self‐healing polymer substrate with corrosion resistance against acidic and alkaline solutions further facilitates its use in various challenging and extreme environments.
more »
« less
Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface
Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies.
more »
« less
- Award ID(s):
- 1726865
- PAR ID:
- 10087819
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The flexibility of planar triboelectric nanogenerators (TENGs) enables them to be embedded into structures with complex geometries and to conform with any deformation of these structures. In return, the embedded TENGs function as either strain‐sensitive active sensors or energy harvesters while negligibly affecting the structure's original mechanical properties. This advantage inspires a new class of multifunctional materials where compliant TENGs are distributed into local operational units of mechanical metamaterial, dubbed TENG‐embedded mechanical metamaterials. This new class of metamaterial inherits the advantages of a traditional mechanical metamaterial, in that the deformation of the internal topology of material enables unusual mechanical properties. The concept is illustrated with experimental investigations and finite element simulations of prototypes based on two exemplar metamaterial geometries where functions of self‐powered sensing, energy harvesting, as well as the designated mechanical behavior are investigated. This work provides a new framework in producing multifunctional triboelectric devices.more » « less
-
null (Ed.)Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications.more » « less
-
null (Ed.)Self-healing triboelectric nanogenerators (SH-TENGs) with fast self-healing, high output performance, and wearing comfort have wide and promising applications in wearable electronic devices. This work presents a high-performance hydrogel-based SH-TENG, which consists of a high dielectric triboelectric layer (HDTL), a self-healing hydrogel electrode layer (SHEL), and a physical cross-linking layer (PCLL). Carbon nanotubes (CNTs), obtained by a chemical vapor deposition (CVD) method, were added into polydimethylsiloxane (PDMS) to produce the HDTL. Compared with pure PDMS, the short-circuit transferred charge (44 nC) and the open circuit voltage (132 V) are doubled for PDMS with 0.01 wt% CNTs. Glycerin, polydopamine particles (PDAP) and graphene were added to poly (vinyl alcohol) (PVA) to prepare the self-healing hydrogel electrode layer. SHEL can physically self-heal in ~1 min when exposed to air. The self-healing efficiency reaches up to 98%. The PCLL is made of poly(methylhydrosiloxane) (PMHS) and PDMS. It forms a good physical bond between the hydrophilic hydrogel and hydrophobic PDMS layers. The electric output performance of the SH-TENG can reach 94% of the undamaged one in 1 min. The SH-TENG (6 × 6 cm2) exhibits good stability and superior electrical performance, enabling it to power 37 LEDs simultaneously.more » « less
-
Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less
An official website of the United States government

