skip to main content


Title: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Abstract. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates.  more » « less
Award ID(s):
1842059
NSF-PAR ID:
10228619
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
16
Issue:
6
ISSN:
1814-9332
Page Range / eLocation ID:
2573 to 2597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eocene‐Oligocene transition (EOT) marks the shift from greenhouse to icehouse conditions at 34 Ma, when a permanent ice sheet developed on Antarctica. Climate modeling studies have recently assessed the drivers of the transition globally. Here we revisit those experiments for a detailed study of the southern high latitudes in comparison to the growing number of mean annual sea surface temperature (SST) and mean air temperature (MAT) proxy reconstructions, allowing us to assess proxy‐model temperature agreement and refine estimates for the magnitude of thepCO2forcing of the EOT. We compile and update published proxy temperature records on and around Antarctica for the late Eocene (38–34 Ma) and early Oligocene (34–30 Ma). Compiled SST proxies cool by up to 3°C and MAT by up to 4°C between the timeslices. Proxy data were compared to previous climate model simulations representing pre‐ and post‐EOT, typically forced with a halving ofpCO2. We scaled the model outputs to identify the magnitude ofpCO2change needed to drive a commensurate change in temperature to best fit the temperature proxies. The multi‐model ensemble needs a 30 or 33% decrease inpCO2, to best fit MAT or SST proxies respectively. These proxy‐model intercomparisons identify decliningpCO2as the primary forcing of EOT cooling, with a magnitude (200 or 243 ppmv) approaching that of thepCO2proxies (150 ppmv). However individual model estimates span a decrease of 66–375 ppmv, thus proxy‐model uncertainties are dominated by model divergence.

     
    more » « less
  2. null (Ed.)
    Abstract. Accurate estimates of past global mean surface temperature (GMST) help tocontextualise future climate change and are required to estimate thesensitivity of the climate system to CO2 forcing through Earth's history.Previous GMST estimates for the latest Paleocene and early Eocene(∼57 to 48 million years ago) span a wide range(∼9 to 23 ∘C higher than pre-industrial) andprevent an accurate assessment of climate sensitivity during this extremegreenhouse climate interval. Using the most recent data compilations, weemploy a multi-method experimental framework to calculate GMST during thethree DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the earlyEocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six differentmethodologies, we find that the average GMST estimate (66 % confidence)during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimatesfrom the EECO are ∼10 to 16 ∘C warmer thanpre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5thAssessment Report (9 to 14 ∘C higher than pre-industrial).Leveraging the large “signal” associated with these extreme warm climates,we combine estimates of GMST and CO2 from the latest Paleocene, PETM,and EECO to calculate gross estimates of the average climate sensitivitybetween the early Paleogene and today. We demonstrate that “bulk”equilibrium climate sensitivity (ECS; 66 % confidence) during the latestPaleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C),3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to4.4 ∘C) per doubling of CO2. These values are generallysimilar to those assessed by the IPCC (1.5 to 4.5 ∘C per doublingCO2) but appear incompatible with low ECS values (<1.5 perdoubling CO2). 
    more » « less
  3. Abstract

    The Eocene-Oligocene Transition atc.34 million years ago (Ma) marked the global change from greenhouse to icehouse and the establishment of the East Antarctic Ice Sheet (EAIS). How the ice-sheet behaviour changed during interglacials across this climate transition is poorly understood. We analysed major, trace and rare earth elemental data of late Eocene interglacial mudstone from Prydz Bay at Ocean Drilling Program Site 1166 and early Oligocene interglacial mudstone from Integrated Ocean Drilling Program Site U1360 on the Wilkes Land continental shelf. Both sites have comparable glaciomarine depositional settings. Lithofacies and provenance at Site 1166 in Prydz Bay are indicative of a late Eocene glacial retreat in the Lambert Graben. Palaeoclimate proxies, including the Chemical Index of Alteration, mean annual temperature and mean annual precipitation, show a dominant warm and humid palaeoclimate for the late Eocene interglacial. In contrast, at Site U1360, in the early Oligocene, the provenance and interglacial weathering regime remained relatively stable with conditions of physical weathering. These results confirm that the EAIS substantially retreated periodically during late Eocene interglacials and that subglacial basins probably remained partially glaciated during interglacials in the earliest Oligocene.

     
    more » « less
  4. Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the model to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions. 
    more » « less
  5. null (Ed.)
    During International Ocean Discovery Program Expedition 371, we will core and log Paleogene and Neogene sediment sequences within the Tasman Sea. The cores will be analyzed for their sediment composition, microfossil components, mineral and water chemistry, and physical properties. The research will improve our understanding of how convergent plate boundaries form, how greenhouse climate systems work, and how and why global climate has evolved over the last 60 my. The most profound subduction initiation event and global plate-motion change since 80 Ma appears to have occurred in the early Eocene, when Tonga-Kermadec and Izu-Bonin-Mariana subduction initiation corresponded with a change in direction of the Pacific plate (Emperor-Hawaii bend) at ~50 Ma. The primary goal of Expedition 371 is to precisely date and quantify deformation and uplift/subsidence associated with Tonga-Kermadec subduction initiation in order to test predictions of alternate geodynamic models. This tectonic change may coincide with the pinnacle of Cenozoic “greenhouse” climate. However, paleoclimate proxy data from lower Eocene strata in the southwest Pacific show especially warm conditions, presenting a significant discrepancy with climate model simulations. The second goal is to determine if paleogeographic changes caused by subduction initiation may have led to anomalous regional warmth by altering ocean circulation. Late Neogene sediment cores will complement earlier drilling to investigate the third goal: tropical and polar climatic teleconnections. During Expedition 371, we will drill in a significant midlatitude transition zone influenced by both the Antarctic Circumpolar Current and the Eastern Australian Current. The accumulation of relatively thick carbonate-rich Neogene bathyal strata make this a good location for generating detailed paleoceanographic records from the Miocene through the Pleistocene that can be linked to previous ocean drilling expeditions in the region (Deep Sea Drilling Project Legs 21, 29, and 90; Ocean Drilling Program Leg 189) and elsewhere in the Pacific Ocean. 
    more » « less